

 Digital Fabrication and Maker Movement in Education

Making Computer – supported Artefacts from Scratch

Deliverable D4.1 (ver5)

Architecture Analysis and Design

This project has received funding from the European Union’s Horizon 2020 Research and

Innovation Programme under Grant Agreement No 731345.

Ref. Ares(2017)1736640 - 31/03/2017

© 2017 eCraft2Learn| Horizon 2020 | 731345

2

PROJECT DESCRIPTION

Acronym: eCraft2Learn

Title: Digital Fabrication and Maker Movement in Education: Making Computer-

supported Artefacts from Scratch

Coordinator: University of Eastern Finland

Reference: 731345

Type: RIA

Program: HORIZON 2020

Theme: Technologies for Learning and Skills

Start: 01. January, 2017

Duration: 24 months

Website: http://www.project.ecraft2learn.eu/

E-Mail: office@ecraft2learn.eu

Consortium: University of Eastern Finland, Finland, (UEF), Coordinator

 Edumotiva, Greece (EDUMOTIVA)

 Mälardalen University of Sweden, Sweden (MDH)

 Zentrum für Soziale Innovation, Austria, (ZSI)

The University of Oxford, United Kingdom, (UOXF)

Synyo GmbH, Austria, (SYNYO)

University of Dundee, Scotland, (UNIVDUN)

University of Padua, Italy, (UNIPD)

Technopolis City of Athens, Greece (TECHNOPOLIS)

Evothings, Sweden (EVOTHINGS)

Arduino, Sweden (ARD)

Ultimaker, United Kingdom (ULTIMAKER)

http://www.project.ecraft2learn.eu/
mailto:office@ecraft2learn.eu

© 2017 eCraft2Learn| Horizon 2020 | 731345

3

DELIVERABLE DESCRIPTION

Number: D4.1

Title: Architecture Analysis and Design

Lead beneficiary: UNIVDUN

Work package: WP4

Dissemination level: Public (PU)

Type Report (R)

Due date: 31.03.2017

Submission date: 31.03.2017

Authors: Andrea Alessandrini, UNIVDUN

Contributors: Afshin Ameri, MDH

 Baran Curuklu, MDH

 Marie Ehrndal, ARD

 Margit Hofer, ZSI

 Bernhard Jaeger, SYNYO

 Alex Jonsson, EVOTHINGS

 Adam Linson, UNIVDUN

 Emanuele Menegatti, UNIPD

 Michele Moro, UNIPD

Reviewers: Ken Kahn, UOXF

 Calkin Suero Montero, UEF

© 2017 eCraft2Learn| Horizon 2020 | 731345

4

Version Control
Version Date Person in charge (Organization) Changes Quality Assurance

1 5.03.2017 Andrea Alessandrini (UNIVDUN) Early Draft Version UNIVDUN, MDH, UOXF

2 10.03.17 Andrea Alessandrini (UNIVDUN) First Draft Version

-integrating partner

comments

UNIVDUN, MDH, UOXF, SYNYO,

ZSI, ARD

3 15.03.2017 Andrea Alessandrini (UNIVDUN) Second Draft Version

-added parts

-integrating partner

comments

UNIVDUN, MDH, UOXF, SYNYO,

ZSI, UNIPD

4 17.03.2017 Andrea Alessandrini (UNIVDUN) - Draft for Internal review

- Proof read

UOXF

5 28.03.2017 Andrea Alessandrini (UNIVDUN) -integrating UOXF

comments

- Proof read

UEF

Acknowledgement: This project has received funding

from the European Union’s Horizon 2020 Research and

Innovation Action under Grant Agreement No 731345.

Disclaimer: The content of this publication is the sole

responsibility of the authors, and does not in any way

represent the view of the European Commission or its

services.

© 2017 eCraft2Learn| Horizon 2020 | 731345

5

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 8

1 Introduction .. 9

1.1. About this deliverable ... 9

1.2. Organisation of this document .. 9

1.3. The learning context and the eCraft2Learn technological environment 9

1.4. Methodology and approach ... 12

2 Scenarios .. 14

2.1. First Scenario: Secondary school science class - Biology lesson 15

2.2. Second Scenario: Mr. Jones, the substitute music teacher 16

2.3. Specification from scenarios ... 18

3 Services, systems and products .. 20

3.1. Tools for ideation, planning, and collaborative project management 20

3.1.1. Moodle .. 20

3.1.2. Blackboard ... 21

3.1.3. ILIAS .. 22

3.1.4. Other e-learning platforms (Google Classroom, Brightspace, Sakai, etc.) 23

3.2. Programming, scripting, and markup Languages 24

3.2.1. Logo ... 24

3.2.2. Python .. 24

3.2.3. JavaScript .. 25

3.2.4. HTML5 .. 25

3.2.5. EDEN and CONSTRUIT! ... 25

3.2.6. Processing .. 25

3.2.7. ToonTalk Reborn .. 26

3.2.8. Other programming languages, environments, etc. 26

3.3. Physical Computing tools ... 27

3.3.1. Arduino ... 27

3.3.2. Arduino Create .. 28

3.3.3. Scratch For Arduino .. 28

3.3.4. SNAP! for Arduino ... 29

3.3.5. ArduBlock .. 30

3.3.6. Minibloq .. 30

3.3.7. Modkit .. 31

3.3.8. Blockly for Arduino ... 31

3.3.9. Bitbloq .. 32

© 2017 eCraft2Learn| Horizon 2020 | 731345

6

3.3.10. Fritzing .. 32

3.3.11. Interfacing with Arduino hardware (transferring software to hardware) 33

3.3.12. Connecting projects with AI Cloud services 34

3.4. 3D printing .. 34

3.4.1. 3D Printing Workflow ... 34

3.4.2. 3D modelling Software ... 35

3.4.2.1. TinkerCad ... 35

3.4.2.2. BlocksCad ... 36

3.4.2.3. OpenSCAD ... 37

3.4.2.4. Fusion 360 .. 37

3.4.2.5. SketchUp .. 38

3.4.2.6. Sculptris ... 38

3.4.2.7. FreeCAD ... 39

3.5. DIY technologies ... 39

3.5.1. Arduino ... 40

3.5.2. Arduino-based robots .. 41

3.5.3. Raspberry Pi ... 42

3.5.4. Raspberry Pi-based robots ... 43

3.5.5. Wemos .. 43

3.5.6. Other educational robots .. 44

4 Framework, Architecture, and Unified User Interface (UUI) 45

4.1. Framework .. 45

4.2. Architecture and Unified User Interface (UUI) .. 46

5 Summary and Conclusions .. 47

5.1. Summary of the technologies .. 47

5.2. Consortium recommendations ... 48

6 References .. 49

7 Appendices .. 50

Appendix A - Programming Language Table ... 50

Appendix B - Programming Environments Table .. 54

Appendix C - Technologies Overview table .. 56

Appendix D - Scenario roles / functions / technologies ... 60

© 2017 eCraft2Learn| Horizon 2020 | 731345

7

TABLE OF FIGURES

Figure 1: eCraft2Learn technological core .. 10

Figure 2: DNA Scenario 1: users activity flow – systems’ diagram (see Appendix D for

associated table) .. 19

Figure 3: Moodle ‘weekly outline’ overview with resource links 21

Figure 4: Blackboard user dashboard ... 22

Figure 5: ILIAS personal desktop (dashboard) view ... 23

Figure 6: other e-learning platform interfaces (l-to-r: Sakai, Google Classroom,

Brightspace) .. 24

Figure 7: Processing IDE .. 26

Figure 8: Code example and Arduino IDE .. 27

Figure 9: The online Arduino Create interface .. 28

Figure 10: Scratch for Arduino .. 29

Figure 11: Snap4Arduino ... 29

Figure 12: ArduBlock .. 30

Figure 13: Minibloq .. 30

Figure 14: Modkit .. 31

Figure 15: Blockly ... 32

Figure 16: Bitbloq ... 32

Figure 17: Fritzing ... 33

Figure 18: A screenshot of TinkerCad.. .. 36

Figure 19: A screenshot of BlockCAD.. ... 36

Figure 20: A screenshot of OpenSCAD.. .. 37

Figure 21: Fusion 360 ... 38

Figure 22: SketchUP ... 38

Figure 23: Sculptris.. 39

Figure 24: FreeCAD .. 39

Figure 25: An Arduino board and Figure 26: An Arduino starter kit 41

Figure 27: Arduino-based robots: ... 42

Figure 28: Raspberry Pi 3 board and Figure 29:Shield stacked on a Raspberry board (HAT)43

Figure 30: Wemos D1 mini Pro and Figure 31: A Wemos shield 44

Figure 32: Wemos reference card for Raspberry Pi .. 44

Figure 33: Lego Mindstorms EV3 and Figure 34: Finch ... 45

Figure 35: eCraft2Learn objectives (PO1-5, TO1-3, BO1-3) and their interrelations 45

Figure 36: eCraft2Learn UUI architecture ... 46

TABLE OF TABLES

Table 1: Programming Language .. 50
Table 2: Programming Environments ... 54
Table 3: Technologies Overview .. 56
Table 4: Roles, functions and technologies .. 60

© 2017 eCraft2Learn| Horizon 2020 | 731345

8

EXECUTIVE SUMMARY

This report presents information about the vision and early definition for the eCraft2Learn

technological environment with a focus on the software components and early design

requirements. The document gives an overview of technologies for programming, making,

and printing artefacts. The document presents the eCraft2Learn technological and

educational objectives. It shows the methods used to review and evaluate the eCraft2Learn

technologies. The report also introduces activity scenarios and early design specifications. The

description of technologies, systems and products to consider for satisfying the eCraft2Learn

objectives is given, followed by an analysis of the programming languages and environments.

The document concludes with a proposed initial design concept for the unified user interface

and the eCraft2Learn architecture.

© 2017 eCraft2Learn| Horizon 2020 | 731345

9

1 INTRODUCTION

1.1. ABOUT THIS DELIVERABLE

This deliverable, D4.1, provides the vision and early definition for the eCraft2Learn

technological environment with a focus on the software components, as well as design

requirements for future work toward the implementation of this system. The outcomes of

this deliverable take into account the pedagogical outputs, through the work carried out in

parallel in Task 3.1, without limiting the bottom-up manner of investigating possible solutions.

This approach is important, considering that the proposed solutions ought to be valid in

various pedagogical settings including informal ones, such as after-school activities.

1.2. ORGANISATION OF THIS DOCUMENT

The document presents an overview of technologies for programming, making, and printing

artefacts. The document first introduces the eCraft2Learn technological and educational

objectives. It then presents the methods used to review and evaluate the eCraft2Learn

technologies. Next, it presents activity scenarios and design specifications for the

eCraft2Learn unified interface. Following a description of technologies, systems and products

to consider for fulfilling the eCraft2Learn objectives, the document continues with an analysis

of the programming languages and environments, based on a SWOT approach (assessing

Strengths / Weaknesses / Opportunities / Threats). The document concludes with a proposed

initial design concept for the unified user interface and the eCraft2Learn architecture.

1.3. THE LEARNING CONTEXT AND THE ECRAFT2LEARN TECHNOLOGICAL ENVIRONMENT

The system that will be developed aims to provide technological support to formal and

informal pedagogical approaches in real-life scenarios (e.g. curricular activities, such as

classroom projects, and extracurricular activities, such as after-school workshops). The prime

age group the project aims to reach is 13-17 year olds. The educational model we use is the

five-stage eCraft2Learn craft- and project-based pedagogy: ideate - plan - create - program -

share.

In this context two different user groups are identified: learners and teachers/coaches. In the

context of this work, these two groups are equally important, although the main goal of the

eCraft2Learn project is to positively affect the learning processes of learners. Teachers can

also become learners, especially with respect to their evolving role from a traditional teacher

© 2017 eCraft2Learn| Horizon 2020 | 731345

10

to a coach (please see D3.1). A learner can also lead or coach his/her learner group. In this

case, the leader may interact with group members in ways similar to a formal teacher,

although typically, a peer leader would not require the same set of analytical tools (e.g., for

formal assessment) that teachers use. For this reason, different roles may be associated with

a system identity, such that the same user may have different rights based on their

momentary role (e.g. Sally may teach in a school classroom where she uses the system for

formal assessment of her students; she may also teach informally after school, in which case

she uses the same system account identity, but in a coaching role that does not require giving

marks).

Figure 1: eCraft2Learn technological core

To this end, the eCraft2Learn technological core connects new technologies with existing ones

that together contribute to the learning experience. The framework that defines the

appropriate usage of these technologies is the five-stage eCraft2Learn craft- and project-

based pedagogy (ideate - plan - create - program - share).

Stage 1 - Ideate. This stage allows learners to investigate their ideas in a manner that is not

rigidly controlled (roughly equivalent to what is commonly referred to as “brainstorming”).

Although there may be a clear goal of the project, the activities in this stage should make use

of exploratory, open-ended searching and browsing. It is plausible to assume that the

activities will be carried out both in the classroom and in other locations, including outside.

Typical activities may include exploring the world physically (e.g., taking pictures, exploring

© 2017 eCraft2Learn| Horizon 2020 | 731345

11

situations outside the classroom, etc.) or virtually (e.g., through online community

discussion). These explorations will conclude by drawing from them a specific challenge in

relation to the overall educational objective (e.g. a biology lesson on DNA might lead from

viewing animations to building an interactive DNA model). This process can be guided by the

STEAM coach based on the context and specific needs of the learners.

Stage 2 - Plan. In this stage, the learners begin the process of planning how a specific project

will be carried out. Once the challenge has been defined, the learners will start to collect

information to make a project plan. This may include getting feedback from the STEAM coach

on their project plan, and also negotiating the roles for group members based on skill levels

(e.g. previous coding experience), interests (e.g. favouring scientific or artistic aspects), and

physical resource sharing constraints (e.g. a shared 3D printer). Here, learners must

systematically collect, classify, and store project material that is of interest (e.g. gathering

from a shared repository pre-existing 3D models, circuit diagrams, code, etc. that could be

adapted to a new project).

Stage 3 - Create and Stage 4 - Program. In creation, learners embark on the co-design and

co-creation of their computer-supported artefact solutions through the application of DIY

technologies. The visualisation and simulation of designs are important parts of Stage 3. In

Stage 4, programming, the learners will develop computer programs to add functionality to

their artefacts. This stage includes software debugging and integrated SW/HW simulation.

Depending on the specific project, creation and programming can proceed linearly, or the two

stages may iteratively cycle (back and forth) until a stable design with the desired functionality

is achieved. Working in this manner to evolve and incrementally improve a design is a

common engineering method. Some of the possible relationships between hardware and

software stages are indicated in Figure 2, below.

Stage 5 - Share. Learners will be encouraged to share and showcase their projects and

implementation ideas, through the open (online) community or through eCraft2Learn

dissemination events. In return, they will receive feedback from artists, designers, and

engineers worldwide. Learners will also participate in eCraft2Learn dissemination events,

where they will showcase their projects to the community in general.

© 2017 eCraft2Learn| Horizon 2020 | 731345

12

1.4. METHODOLOGY AND APPROACH

In this section, we describe the operationalisation of Task 4.1 by the WP4 consortium

partners, with a focus on the process of screening different possible resources for our

collection of programmes, clustered into several categories:

a) Learning environments

b) Programming languages

c) Programming interfaces/environments

d) Artificial Intelligence services (cloud APIs)

e) 3D modelling tools/environments.

These categories are used by educators and learners, which suggests that they are promising

candidates for inclusion in the eCraft2Learn unified user interface (UUI).

Following the raw data gathered from several sources and threads, we refined our choice

during collocated and online meetings with the input of the WP4.1 partners and (later) the

entire eCraft2Learn consortium.

Resources were evaluated using a triangulation of methodologies, leading to the

establishment of the (preliminary) eCraft2Learn architectural design. The evaluation task was

approached from different perspectives, and encompassed a number of qualitative methods

for deciding on appropriate tools. Following a SWOT analysis of each potential resource, we

conducted a more in-depth assessment of alternatives. We gathered insights from interviews,

demonstrations, and observations, in relation to the detailed activity scenarios elaborated in

section two of this document.

A SWOT analysis (Strengths - Weaknesses - Opportunities - Threats) is a strategic analytical

tool that combines an assessment of strengths and weaknesses (e.g. of an organisation, a

product design, etc.) with an assessment of opportunities and threats posed by the target of

the analysis (e.g. a design for a very small mobile phone may reflect a strength, given its light

weight and portability, while it may also pose a threat, for instance, of being easily lost). This

approach was applied to each of the technologies, grouped into different categories.

Our aim was to facilitate and provide justification for making decisions regarding which

possible elements will be included in the eCraft2Learn interface architecture, with due

consideration of the full potential of the eCraft2Learn ecosystem aimed at the end-users.

© 2017 eCraft2Learn| Horizon 2020 | 731345

13

Thus, the eCraft2Learn consortium partners identified different criteria relevant to our

evaluation of available technologies:

a) General criteria

- Usability

- Current standing (e.g. under active development or abandoned)

- Cost

- Customisability / extensibility (e.g. look-and-feel, functionality enhancement via plugins)

- Licence (free and open source vs. proprietary)

- Developer and user community support (size and activity of communities)

- Ease-of-implementation in schooling environments and informal educational settings.

b) Technical criteria

- Compatibility with widely deployed educational systems (e.g. Moodle)

- Administrator rights requirements (e.g. for software installation)

- Features (functionalities)

- Platforms (OS, mobile, etc.)

c) Pedagogical criteria

- Learning curve for usability (intuitive or requires training)

- Suitability for target age group (e.g. interface specifically designed for 3-5 year olds not

suitable or 13-17 year olds)

- Allows group work

- Supports sharing.

The objective of the SWOT analysis was to identify the best:

- programming languages

- programming interfaces/environments

- artificial intelligence services (cloud APIs)

- 3D-modelling tools/environments

for the eCraft2Learn platform, based on a number of factors including an understanding of

different user needs in real-world scenarios. Thus, the WP4 partners analysis focused on

developing an architecture that would enable learning-community collaboration, ensure

integration with existing platforms, and be user friendly.

© 2017 eCraft2Learn| Horizon 2020 | 731345

14

After the collection of each partner's final analysis, we were able to create a map that outlined

the preferences for and/or against specific programmes. During several meetings, these

results were discussed in detail, until reaching a final decision on the above elements that

shall be implemented in the eCraft2Learn architecture (eCraft2Learn preliminary

technologies and tools “toolkit”).

The collected data were matched against activity scenarios (scenarios that show how a

particular activity is done in a specific context). The scenarios were discussed in detail with

the project consortium. The activity scenarios, together with the SWOT analysis, led us to

create design concepts to satisfy preliminary requirements and integrate with a preliminary

system architecture.

2 SCENARIOS

To understand the different (technical) needs as well as steps to take in a learning scenario

with eCraft2Learn, two scenarios were assembled. They provide some initial insight into the

complex interrelation between pedagogy, technology, and environment, and they foster

understanding about how the technology will be embedded.

Activities in the eCraft2Learn ecosystem are developed within five stages of that consider the

features of personalised and adaptive learning within flexible and open learning scenarios

(elaborating on the basic concepts of ‘ideate - plan - create - program - share’):

1. Ideation - Exploring the world

2. Planning a project

3. Designing and building computer-supported artefact

4. Programming the built computer-supported artefact

5. Showcasing.

These stages can be mapped onto meaningful scenarios that are dependent on the age group

and learning goals of the specific context. The stages can be tied, for example, to a theater

robotics project, where activities start by selecting a story or theater chapter to portray, then

by designing and implementing characters and their actions, and finally culminating in a

performance. Steps are not necessarily strictly followed in linear order, since when learners

freely find their personalised ways through a project, some back and forth between steps is

expected (e.g. when implementing a chosen design is not working out, in some cases, a

© 2017 eCraft2Learn| Horizon 2020 | 731345

15

learner may discover an innovative breakthrough, while in other cases, a new design may be

sought).

2.1. FIRST SCENARIO: SECONDARY SCHOOL SCIENCE CLASS - BIOLOGY LESSON

Susan, a secondary school science teacher, has a class of 30 fifteen-year-olds, and she will

start to teach them about DNA next week. She is eager to combine hands-on projects with

pedagogical ideas she learned about in her professional development courses. For her DNA

lesson, she plans to use 3D modelling, 3D printing, computer programming, and assembly

instructions for electronic components and circuits. Her idea is to let the students build 3D-

modelling ‘wireframes’ of a DNA sequence.

Susan first creates groups according to her students’ diverse abilities and skills, for instance,

making sure students who already have programming experience are not all concentrated

into one group.

A group of students, Paul, Kelly, and Julian, started to work on their project on their 3D

wireframe model of DNA. Once they were done, Susan helped them with the 3D printing of

the model’s pieces. The teacher’s help was important, since there were a lot of errors to

resolve at the beginning of the process. First, they had to download drivers for the correct 3D

printer hardware. Then, once in a while, the printing process would fail, and they would have

to discard the spoiled material and start the sequence again. User errors would also occur,

such as miscalculations of scale between the software model and the printed result.

Awhile later, Kelly and Julian wondered what would happen if they modify the model shape.

Kelly changed a parameter of one of the DNA double-helix ‘rungs’, and the group started to

see interesting results. The teacher helped them print some additional pieces to transform

their physical model.

The students then assembled the printed pieces into a full model. The 3D-printed model gave

them a much different sense than the 3D computer images, because they could hold the

model with their hands, rotate it directly, and compare their own model with other students’

models.

© 2017 eCraft2Learn| Horizon 2020 | 731345

16

Susan continued to discuss concepts from the lesson plan throughout the process, and she

now felt that the students understood more about DNA than they would have from just

reading a textbook and taking a test.

The following day, she had each group present their model to the rest of the class, to discuss

what they learned about how molecules form the famous double-helix structure. To prepare

for the presentation, the teacher asked them to ‘animate’ their physical models with

technological enhancements. Susan used the guidebook included with the STEAM ‘packet’ to

explain different ways they could transform their physical models with Arduino circuits. Each

group selected a project and began to work on it. To design the circuits, the students were

facilitated by paper template circuits, and example code which was ready to use and easy to

modify.

During the presentation Paul, Kelly, and Julian’s group took turns explaining why they wanted

to animate their physical models using LEDs in a particular way, and teaching their classmates

how they did it. They explained how to highlight the different proteins that connected the

DNA strands by assigning different coloured LEDs to each. They showed that it was difficult to

see that certain protein sequences were repeated. By lighting up the coloured LEDs, everyone

could easily see the patterns. Protein sequences become even more evident when the LEDs

associated with them flashed at the same time. They then explained to the class how they

programmed the Arduino for their project, including how they solved a tricky problem:

creating a flashing light sequence to highlight repetitive structures. This peer learning process

continued with each group presentation.

In just one week, Susan was able to foster student interest in DNA, while students learned

how to use 3D models and printing, and how to program small circuits using basic

programming elements such as sequences and loops. The students also gained experience in

collaborating with each other, and in using software and hardware technology to realise ideas

that began in their own imagination. Susan felt empowered by these tools, which facilitated

the transformation of classroom roles and activities, and ultimately helped her achieve a

progressive pedagogical approach in her classroom.

2.2. SECOND SCENARIO: MR. JONES, THE SUBSTITUTE MUSIC TEACHER

A substitute teacher for music class, Mr Jones, has 10 students, who are around 16 years old.

He has been asked to teach them about how music is made in a recording studio. He starts by

© 2017 eCraft2Learn| Horizon 2020 | 731345

17

playing a recording for them, and explains some of the different technologies that are used

to make it. However, he notices that many of the students are getting bored. He asks: “Does

anyone know how to make a drum machine?” The students laugh, joking about how they can

download one from an app store with their mobile phones. They are expecting to be

reprimanded, but they are instead surprised by Mr Jones’ reply: ‘How about we all learn how

to make a drum machine ourselves, without our mobiles?’ The students are very intrigued

and do not really believe this is possible, but they are willing to give it a chance.

Mr Jones has brought with him an eCraft2Learn briefcase with 4 project kits. The kits contain

electronic components and simple instructions on how use the components, with STEAM

project examples. He asks the students to form groups, and loans each group a kit. The

students are interested, but some are worried this task might be too difficult for them, since

they do not know about technology like Arduinos. He tells them not to worry, and asks them

to take out a sheet of paper. ‘Your sheet of paper will become the buttons for your drum

machine!’ They think he must be joking, but they now feel very comfortable working on the

project, since instead of a complicated circuit, they are focused on a piece of paper. He asks

them to draw lines on the paper, dividing it up into ‘buttons’, in any arrangement they would

like.

He then asks them to take out of their project kits a few different coloured wires, and a

handful of small sensors. They are instructed to connect each sensor to a different coloured

wire, and to connect the free end of the wire to the series of pins on the Arduino board.

Finally, he asks them to tape down each wire onto the piece of paper, so that there is one

sensor in each square they’ve drawn. He also invites them to connect the small speaker from

their kits to the Arduino audio output connector.

The students are following along, but they seem to be losing interest. Sensing this, Mr Jones

decides to take an intermediary step. There are also LEDs in the kit, and he asks them to

connect the LEDs to wires, and the wires to the other set of pins on the Arduino board. He

knows from a previous project that there is software pre-loaded onto the Arduinos that

connects the input and output pins. He now invites the students to “play” the squares on the

paper, which trigger the lights, and the students are immediately engaged, for a moment.

They quickly tire of making lights flash, but they still want to know more about how the

Arduino works. And they really want to make the drum machine that was promised to them!

© 2017 eCraft2Learn| Horizon 2020 | 731345

18

At this point, Mr Jones tells them to plug the USB connector on their Arduinos into their

classroom workstations, which have the Arduino coding environment on them. They load the

software from the device onto their screens, and he explains to them what each line of code

does, and what makes the LEDs light up. He then shows them how to add new lines of code

that trigger a drum sound when the light is triggered. For the remaining time, the students

play collaborative rhythms using drum sounds made by their paper and Arduino drum

machines. Some of the students even get the idea that they can go back into the software

and replace the drum sounds with sounds of their own voices. Now they are enjoying making

music together, while having learned about music technology through an exploratory, hands-

on approach.

2.3. SPECIFICATION FROM SCENARIOS

The eCraft2Learn technical specifications have been developed from a scenario-based design

approach (Carroll, 2000). Figure 2 (below) depicts aspects of the roles, functions, and

technologies derived from the first scenario (above), and generalisable to other cases. A

tabular view of this information is presented in Appendix D.

To briefly summarise the contents of Figure 2 (and Appendix D), we can imagine a process by

which a teacher selects a biology lesson from among different subject areas available from

the eCraft2Learn unified interface. Within this lesson, there is a further project library for

selecting specific projects that relate to the topic of the lesson (e.g. within the biology subject

area, there are projects for the topic of DNA). The teacher can select one or more projects

based on classroom resources and student skill levels. Typically, the teacher would divide

learners into groups, to create a balance of skills and interest within each group, and to help

facilitate resource allocation. The makeup of each group and the available resources would

indicate to the teacher which project templates could be assigned.

Once a group of learners has been assigned a project template, the group can engage in the

five-stage eCraft2Learn process: Ideate, Plan, Create, Program, Share. To Ideate (stage 1),

learners might arrive at the idea to embed coloured LEDs in a 3D printed DNA model, to

highlight biological patterns of protein arrangement (see scenario 1, above). This idea would

then require a Plan (stage 2) for using the different software and hardware technologies that

would result in a design for a circuit and 3D model. They could then move onto Create (stage

3), in which they would print and assemble their models and components, while also taking

care to Program (stage 4), by writing the software code that will provide the LED functionality

© 2017 eCraft2Learn| Horizon 2020 | 731345

19

(e.g. flashing colours). Once their model is assembled with their electronics, and their code is

running, they will have completed the project from the template. Finally, they can Share

(stage 5) their design, code, photos, notes, and more, with their immediate classroom peers,

the wider online community, and also with the teacher, who can use the shared materials as

a part of a learner assessment.

Figure 2: DNA Scenario 1: users activity flow – systems’ diagram

(see Appendix D for associated table)

© 2017 eCraft2Learn| Horizon 2020 | 731345

20

3 SERVICES, SYSTEMS AND PRODUCTS

eCraft2Learn will develop a learning ecosystem that will enhance craft- and project-based
pedagogies through using, combining, and modifying successfully implemented technical
platforms such as Arduino- and Raspberry Pi-based electronics, cloud-based 3D-printer
simulators, and maker community-generated content.

In the following sections, we give an overview of systems, services, and technologies available
that need to be considered for our project. We review tools for ideation, planning, and
collaborative project management (3.1), programming, scripting, and markup languages (3.2),
physical computing tools (3.3), 3D printing tools (3.4), and DIY technologies (3.5).

3.1. TOOLS FOR IDEATION, PLANNING, AND COLLABORATIVE PROJECT MANAGEMENT

Here, we review tools for the collaborative management for learning environments that have
potential for integration with the eCraft2Learn technological ecosystem.

3.1.1. MOODLE1

Moodle is a VLE (virtual learning environment) for desktop and mobile that supports the
activities of administrators, teachers, students, and parents. It includes standard features
such as calendar and grade systems. Moodle was originally developed to help educators
create online courses with a focus on interaction and collaborative construction of content,
and it is in continual evolution.

The Moodle environment is based on a plugin architecture. Plugins are a flexible tool set,
allowing Moodle users to extend the features of the site. There are hundreds of plugins for
Moodle, extending the features of Moodle's core functionality. Each plugin is maintained in
the Moodle plugins directory. Graphical themes for Moodle can be installed to change the
look and functionality of a Moodle site or of an individual course.

Moodle has been translated into over 100 different languages and is accessible in many
countries worldwide. Institutions can add as many Moodle servers as needed without having
to pay license fees. Opensource.com (from RedHat Linux) reports that Moodle will always be
an open source project. It runs without modification on Unix, Linux, FreeBSD, Windows, OS X,
NetWare and any other systems that support PHP and a database, including webhost
providers. Also, a Moodle mobile app is available in Google Play, App Store (iOS), and the
Windows Phone Store. Users can download and install Moodle on a Web server, such as
Apache HTTP Server, and a number of database management systems, such as PostgreSQL,
are supported. Pre-built combinations of Moodle with a Web server and database are
available for Microsoft Windows and Macintosh. Other automated installation approaches

1 The Moodle section is adapted, with significant modification, from https://en.wikipedia.org/wiki/Moodle,

accessed 16-March-2017. See also https://docs.moodle.org/32/en/Main_page.

© 2017 eCraft2Learn| Horizon 2020 | 731345

21

exist, such as installing a Debian package, deploying a ready-to-use TurnKey Moodle
appliance, using the Bitnami installer, or using a "one-click install" service such as Installatron.

Moodle’s adopted universal e-learning standards include SCORM and LTI. Sharable Content
Object Reference Model (SCORM) is a collection of e-learning standards and specifications
that define communications between client side content and a server side learning
management system, as well as how externally authored content should be packaged in order
to integrate with the LMS effectively. Learning Tools Interoperability (LTI) is a standard way
of integrating rich learning applications (often remotely hosted and provided through third-
party services) with educational platforms. Moodle uses the External Tool activity to act as an
'LTI consumer' as standard, and will act as an 'LTI provider' using a plugin.

Figure 3: Moodle ‘weekly outline’ overview with resource links

3.1.2. BLACKBOARD2

Blackboard Learn (previously the Blackboard Learning Management System), is a virtual
learning environment and course management system developed by Blackboard Inc. It is
Web-based server software that features course management, customizable open
architecture, and scalable design that allows integration with student information systems

2 The Blackboard section includes material from https://en.wikipedia.org/wiki/Blackboard_Learn, accessed 16-

March-2017.

© 2017 eCraft2Learn| Horizon 2020 | 731345

22

and authentication protocols. It may be installed on local servers or hosted by Blackboard ASP
Solutions. Its main purposes are to add online elements to courses traditionally delivered
face-to-face and to develop completely online courses with few or no face-to-face meetings.

Blackboard is proprietary software, and has poor Linux compatibility and support. It has been
identified as having a number of further limitations, including a traditional, hierarchical
education system structure implicit in its design, and service provider issues with glitches,
outages, and associated high costs to use and maintain. Its functionality has substantial
overlap with Moodle, including communication tools such as chat and threaded discussions,
and content tools, such as calendars, grading, and media libraries.

Figure 4: Blackboard user dashboard

3.1.3. ILIAS3

ILIAS offers a flexible, open source, SCORM-compliant environment for learning and working
online with integrated tools. ILIAS goes far beyond the idea of learning being confined to
courses as a lot of other LMS do. ILIAS can rather be seen as a type of library providing learning
and working materials and contents at any location of the repository. This offers the
possibility to run ILIAS not as a locked warehouse but as an open knowledge platform where
content might be made available for non-registered users too.

ILIAS offers a lot of features to design and run online-courses, create learning content, offer
assessments and exercises, run surveys and support communication and cooperation among
users. These include desktop functionalities, such as note-taking, bookmark management,
learning resource access, and progress monitoring. It also has multiple modes of delivering

3 The ILIAS section includes material from https://en.wikipedia.org/wiki/ILIAS, accessed 16-March-2017.

© 2017 eCraft2Learn| Horizon 2020 | 731345

23

and sharing content, via categories, folders, groups, and courses. Contents can include text,
images or videos to the page, which can be moved, copied or linked into other parts of the
system. It also has real-time interactive chat, podcasting, and group forums, as well as full-
featured administration and management capabilities, such as control over roles and
permissions, course management and grading, course-wide progress tracking, announcement
channels, and designing, conducting, and evaluating user assessments and exams.

Figure 5: ILIAS personal desktop (dashboard) view

3.1.4. OTHER E-LEARNING PLATFORMS (GOOGLE CLASSROOM, BRIGHTSPACE, SAKAI, ETC.)

A number of e-learning platforms are available, including Google Classroom (free/closed),
Brightspace (pay/closed), Sakai (free/open), and others. These typically offer features similar
to Moodle (which most seem to be directly based on), with additional features and
drawbacks. For instance, Google Classroom integrates with other Google products for email
(GMail), file storage (Google Drive), etc., to provide the full set of functionality available
through Moodle. While it has the support of Google, Inc., the company has been criticised for
its user data gathering (not only in general, but specifically for Classroom). Brightspace is far
less widely adopted than Moodle, cost-intensive, and lacks many of the customization options
found in other platforms. Sakai provides a strong offering, again, substantially overlapping
with Moodle’s feature set, but primarily aimed at higher education institutions.

© 2017 eCraft2Learn| Horizon 2020 | 731345

24

Sakai interface Google Classroom interface Brightspace interface

Figure 6: other e-learning platform interfaces
(l-to-r: Sakai, Google Classroom, Brightspace)

3.2. PROGRAMMING, SCRIPTING, AND MARKUP LANGUAGES

In this section we give an overview of programming, scripting, and markup languages that
relate to the objectives of our project.

3.2.1. LOGO4

Logo is an educational programming language specific aimed at introducing children to
programming and mathematics, developed by Feurzeig and Papert in the 1960s (Papert,
1980). The language was the first targeting young children (4-12) as primary users. It is known
for its turtle “character”, which can be a hardware robot or a software avatar that receives
user commands for movement and drawing to produce physical drawings or on-screen
graphics. The language uses commands like FORWARD 70 (move the turtle/cursor 70 steps)
or RIGHT 50 (rotate 50 degrees).

Today, Logo has several off-shoots (e.g. NetLogo, StarLogo, etc.). NetLogo was initially aimed
at high school and undergraduate education. It contains several hundred well-designed
pedagogic sample models. Nowadays a significant portion of its users are researchers
(typically in social and life sciences.5 NetLogo is open source, and is the most popular agent-
based modelling tool, and it continues to be actively developed. There is a web-based version
and it also runs on Windows, Mac, and Linux systems.

3.2.2. PYTHON

Python is a text-based general-purpose programming language that supports multiple programming

paradigms and styles (object-oriented, procedural, etc.). The language runs on multiple platforms and

is open source, with a large, active community. Most of the software for the One Laptop per Child XO

is written in Python. There are several cases where Python is used in primary and high schools, and it

is now frequently taught in first-year computer science university courses.

4 http://el.media.mit.edu/logo-foundation/
5 http://ccl.northwestern.edu/netlogo/references.shtml

http://el.media.mit.edu/logo-foundation/
http://ccl.northwestern.edu/netlogo/references.shtml

© 2017 eCraft2Learn| Horizon 2020 | 731345

25

3.2.3. JAVASCRIPT

JavaScript is a scripting language commonly used in web development. JavaScript is frequently used

as a client-side scripting language that provides dynamic functionality for websites. When combined

with HTML5 (described below), it can be used to create standardised interactions with computer

hardware (e.g. microphone, camera, hard drive, etc.). For this reason, the combination of JavaScript

and HTML5 is often used to develop powerful web-based applications.

3.2.4. HTML5

HTML5 is a markup language, for formatting documents to be viewed in web browsers. It also

interoperates with a number of JavaScript APIs, to provide extended functionality for content delivery

(e.g. video), real-time communication (e.g. chat), offline processing, content storage, and more. It is

an open standard published by the World Wide Web Consortium (W3C). It is lightweight, easy to learn

and understand, and is widely supported and adopted.

3.2.5. EDEN AND CONSTRUIT!6

EDEN is the Engine for DEfinitive Notations, developed exclusively at the University of Warwick. It is

designed for constructing and exploring a wide variety of models. There are a number of

implementations of the EDEN interpreter, including one in JavaScript (JS-EDEN). In contrast to the

products of traditional programming, the models connect with personal experience through a

different approach to software development -- a kind of 'alternative computing' that can be used for

educational technology.

The CONSTRUIT! Project (based on EDEN) uses principles and tools to enable educators and learners

to collaborate in creating live interactive resources that capture personal understandings of a

phenomenon (which they term ‘construals’). Construals serve as personal, shareable ‘working models’

or understandings. According to the project founders, their approach is designed to be more

accessible than conventional programming but more expressive and powerful than conventional uses

of ICT. Their stated aim is to facilitate the online development of open educational resources that can

be flexibly modified by educators and learners to support the integration of instruction and

construction. This makes it well suited for potential integration into the eCraft2Learn ecosystem.

3.2.6. PROCESSING7

Processing has promoted software literacy, particularly within the visual arts, and visual literacy within

technology. Initially created to serve as a software sketchbook and to teach programming

fundamentals within a visual context, Processing has evolved into a development tool for

professionals. The Processing software is free and open source, and runs on Mac, Windows, and

GNU/Linux platforms.

6 The EDEN section uses material from https://www2.warwick.ac.uk/fac/sci/dcs/research/em/,
http://construit.org/, and http://construit.org/project/.

7 The Processing section uses material from https://processing.org/overview/, accessed 17-March-
2017.

https://www2.warwick.ac.uk/fac/sci/dcs/research/em/
http://construit.org/
http://construit.org/project/

© 2017 eCraft2Learn| Horizon 2020 | 731345

26

Processing continues to be an alternative to proprietary software tools with restrictive and expensive

licenses, making it accessible to schools and individual students. An active community of contributors

develop and share programs, code, libraries, and tools to extend the possibilities of the software. The

Processing community has written more than a hundred libraries to facilitate computer vision, data

visualization, music composition, networking, 3D file exporting, and programming electronics.

Figure 7: Processing IDE

3.2.7. TOONTALK REBORN

ToonTalk is a programming environment that is web based, with very rich features. It uses modern

web technologies such as HTML5 and Javascript, it supports interactive webpage displays and web

services, including speech recognition and AI features. The user interface, however, might need to

be improved if it is to be included in the eCraft2Learn ecosystem.

3.2.8. OTHER PROGRAMMING LANGUAGES, ENVIRONMENTS, ETC.

Our analysis also considered a number of other technologies for inclusion in the eCraft2Learn

ecosystem. Those summarised here (and also found in the SWOT table appendices) were ruled out

relatively early in the evaluation process, since they did not meet the targeted needs of the

eCraft2Learn project. For this reason, it is beyond the scope of this document to provide further details

of their specifications.

In brief, they can be divided into two main categories: (1) general programming languages
and tools that could be coupled with educational materials (traditional “learn how to code”
approach), in which we evaluated C/C++, Pascal, Ruby, Lua, and Google Go; and (2)
programming languages and tools that are specifically designed or oriented toward formal
educational settings or informal learning contexts, in which we evaluated Alice, Oz, Swift,
Greenfoot, Kodu, and Agentsheets/Agentcube. (We also evaluated Scratch and Snap!, which
are discussed in a dedicated section below.) In addition, we considered the benefits and
drawbacks of proprietary languages and development environments (e.g. Macromedia Flash
/ ActionScript), and also general open standards such as XML (a markup rather than a
programming language, but frequently used in combination with programming).

© 2017 eCraft2Learn| Horizon 2020 | 731345

27

3.3. PHYSICAL COMPUTING TOOLS

Physical computing is about creating a conversation between the physical and the digital world.

Physical Computing tools play a fundamental role in sustaining a meaningful, flexible, and efficient

iterative making and learning process. In recent years, many prototyping platforms have become

available for designers to construct interactive prototypes rapidly in a way that was unimaginable a

few years ago. The Arduino platform (Mellis, Banzi, Cuartielles, & Igoe, 2007) is widely used for this

purpose. It is based on free and open source principles and is low-cost (related toolkits include

Phidgets (Greenberg & Fitchett, 2001) and LittleBits (Bdeir, 2009)). Most of the tools reviewed below

relate to the Arduino platform.

3.3.1. ARDUINO8

The Arduino development platform consists of the open-source coding environment and the core

library. Arduino microcontrollers are programmed using a dialect of the C and C++ programming

languages. The specialised language uses clearly described functions like digitalRead() and

analogWrite(), which seem to be more easily grasped than advanced low-level microcontroller

programming. The integrated development environment (IDE) runs on many OS platforms and also

has a web-based variant. Historically, Arduino relates to Processing (described above), and also enjoys

its own large, active international community of contributors. It is well suited to our 13-17 user group,

due its vast educational support, use in a wide range of Maker projects, and its ability to be used by

all skill levels.

Figure 8: Code example and Arduino IDE

8 www.arduino.ac

http://www.arduino.ac/

© 2017 eCraft2Learn| Horizon 2020 | 731345

28

3.3.2. ARDUINO CREATE9

Arduino Create enables Arduino programming directly from the web browser. It requires a login and

downloadable plugin (Arduino Create Agent) installation on the local computer. The interface has easy

access to a wealth of materials including libraries, code examples, and more, which are automatically

pre-selected and suggested based on what Arduino board is specified as the project basis.

Figure 9: The online Arduino Create interface

3.3.3. SCRATCH FOR ARDUINO10

The Scratch for Arduino (S4A) offers a visual paradigm for programming Arduinos that is based on the

Scratch environment. The environment use component “blocks” grouped by function:

digital/analogue, I/O, motor control, and streaming. S4A uses a Firmata-type protocol to interface

with the code and the Scratch program. The Firmata library implements the Firmata protocol for

communicating with software on the host computer. A version of Scratch is installed on Raspberry Pis

with similar functionality.

9 https://create.arduino.cc/

10 http://s4a.cat/

https://create.arduino.cc/

© 2017 eCraft2Learn| Horizon 2020 | 731345

29

Figure 10: Scratch for Arduino

3.3.4. SNAP! FOR ARDUINO11

Snap4Arduino is a variation of the Snap! blocks-based programming language that lets the user

program a wide range of Arduino circuit boards. (S4A uses standard Firmata firmware, which needs to

have been loaded onto the Arduino board. It also supports the Linino library.) A web-based version is

currently in the works. As with the desktop version, you need to have Firmata loaded into your Arduino

board. It uses the Google Chrome browser with a special browser extension (Snap4Arduino.crx).

(Beyond Arduino, NodeSnap12 extends Snap! to run on Raspberry Pis.)

Figure 11: Snap4Arduino

11 http://snap4arduino.org/index.html

12 https://github.com/rasplay/nodesnap

http://snap4arduino.org/index.html
https://github.com/rasplay/nodesnap

© 2017 eCraft2Learn| Horizon 2020 | 731345

30

3.3.5. ARDUBLOCK13

ArduBlock is a visual programming language for Arduino. ArduBlock uses a drag-and-drop

programming paradigm. The ArduBlock converts the visual blocks into textual code via the Arduino

IDE. In this way, programming syntax is hidden by visual graphics, with in-built affordances for

connecting smaller units (similar to Scratch). ArduBlock is open source and works on Windows, Mac,

and Linux platforms. It is not a standalone program, as it requires the Arduino IDE.

Figure 12: ArduBlock

3.3.6. MINIBLOQ14

Minibloq is similar to ArduBlock, a graphical programming environment. In contrast to ArduBlock,
however, Minibloq is a standalone program (it does not require the Arduino IDE). Minibloq generates
Arduino-ready code instantaneously, as its graphical blocks are dragged into a special interface pane.

Figure 13: Minibloq

13 http://blog.ardublock.com/

14 http://blog.minibloq.org/

http://blog.ardublock.com/
http://blog.minibloq.org/

© 2017 eCraft2Learn| Horizon 2020 | 731345

31

3.3.7. MODKIT15

The main Modkit environment is Modkit Micro (accessible via Modkit.io), a successful visual

programming browser-based implementation. At the moment the environment supports the main

Arduino boards like the Uno, LilyPad, etc. The interface can easily switch between blocks (graphical)

or source code (textual) programming styles. Currently, it lacks strong community support.

Figure 14: Modkit

3.3.8. BLOCKLY FOR ARDUINO16

Blockly is a HTML5-based block interface for Arduino programming. Blocks generate textual code in

real-time, including Arduino code and XML.

15 http://www.modkit.com

16 https://ardublockly.embeddedlog.com/demo/index.html
http://blokkencode.ingegno.be/index_en.html

http://www.modkit.com/
https://ardublockly.embeddedlog.com/demo/index.html
http://blokkencode.ingegno.be/index_en.html

© 2017 eCraft2Learn| Horizon 2020 | 731345

32

Figure 15: Blockly

3.3.9. BITBLOQ17

Bitbloq is a visual electronics and block-based programming interface that toggles between visual and

textual modes.

Figure 16: Bitbloq

3.3.10. FRITZING18

Fritzing is an open-source hardware initiative that makes electronics accessible to a wide audience. It

offers a software tool, a community website, and additional services such as custom circuit board

(PCB) printing. As with Processing and Arduino, the Fritzing community fosters a creative ecosystem

that allows users to document their prototypes, share them with others, teach electronics in a

classroom, and layout and manufacture professional PCBs.

17 http://bitbloq.bq.com/#/

18 http://fritzing.org/home/

http://bitbloq.bq.com/#/
http://fritzing.org/home/

© 2017 eCraft2Learn| Horizon 2020 | 731345

33

Figure 17: Fritzing

3.3.11. INTERFACING WITH ARDUINO HARDWARE (TRANSFERRING SOFTWARE TO

HARDWARE)

Some of the above tools are for designing Arduino circuits, while others are for developing code to

run on the Arduino hardware. Code that runs on Arduino hardware is called a ‘sketch’ (in their

terminology) and a sketch must be transferred from the development machine (e.g. a notebook or

workstation computer) to the Arduino hardware. Transferring sketches from a host to an Arduino was

previously a rather cumbersome process (legacy approach). However, two new standard interfaces

for writing sketches to Arduinos are now available for wired and wireless internet connected devices:

Arduino Ethernet Shield 2 19 (wired) and Arduino WiFi Shield 20 (wireless). These technologies

(hardware modules that connect to Arduino circuit boards) facilitate a simple process of loading

sketches (developed with the above referenced software) onto Arduino hardware via a local internet

(or intranet) connection.

Other approaches to transferring sketches onto Arduino hardware include the use of
specialised tools, for instance, browser-based tools that are commonly tied to specific web
browsers (e.g. Google Chrome, Mozilla Firefox), some of which require administration
privileges on the local machine where the sketch is developed. Variants include serial port
connections via a Google Chrome app API, a Chrome-only Bluetooth API, and the jUART
extension for Firefox. Another browser-based approach is based on the Firmata protocol,

19 www.arduino.cc/en/Main/ArduinoEthernetShield

20 www.arduino.cc/en/Main/ArduinoWiFiShield

© 2017 eCraft2Learn| Horizon 2020 | 731345

34

which has some cross-browser, cross-platform support and also interfaces with Snap4Arduino
and Scratch4Arduino. Another option we considered is Wyliodrin. It strengths relies on its
web based platform that is also compatible with several embedded hardware systems such
as Arduino and the Raspberry Pi. Another important opportunity/feature of this
programming environment is that devices could be driven wirelessly.

3.3.12. CONNECTING PROJECTS WITH AI CLOUD SERVICES

It is possible for learners engaged with maker technologies to develop projects that connect with

established AI technologies for providing, e.g. speech recognition services or machine vision

recognition capabilities. The main providers of AI interfaces compatible with this scenario include

Google AI Cloud, IBM Watson Services (vision, speech, and data API), Amazon Alexa Voice Service API,

and Microsoft Cognitive Services. Some of the software described above, such as Snap!, can interface

with these AI Cloud services so that learners can develop simple projects that provide advanced

speech and vision recognition technology. Generally, these AI Cloud services are provided at no cost

for low volume usage (typical of maker projects), however, free registration is required in order to use

the services (registration provides an alphanumeric ‘key’ that must be included in the maker software

that issues the request to the cloud service). Alternatively, if a single key were used for the entirety of

the eCraft2Learn ecosystem including all deployments, no further individual registrations would be

required. However, the remote request volume would likely exceed the free usage quota and there

would be an associated service fee charged by the provider.

3.4. 3D PRINTING

3D printing is a technology that can output 3D objects by selectively adding or removing material

under control of a computer. The objects are normally designed using 3D-modelling software and/or

obtained from sources such as 3D scanners. In order to “print” the 3D object, the computer slices the

3D software model into thin layers and sends the information to the 3D printer. The 3D printer in turn

adds (or removes) material, layer by layer, in order to produce the final shape of the object.

A range of different types of 3D printers are currently available, from industrial versions that can print

metal objects to smaller, consumer-grade desktop versions that normally print plastic objects using

resin as source material. Since the goal of this project is to use 3D printing in school environments, in

this document, we will only focus on consumer-grade desktop 3D printers. Also, a more detailed

description and overview of 3D printing technologies will be later presented in D4.2, in which we will

focus on the process of 3D printing and 3D modelling.

3.4.1. 3D PRINTING WORKFLOW

The first step in printing a 3D model is to create one. It is also possible to create a 3D model using 3D

scanners or downloading 3D virtual objects from different sources (e.g. 3D Warehouse). A variety of

3D modelling/design programs are available today. Some are explicitly designed for industrial

engineering needs and some are designed primarily for use by hobbyists and students.

© 2017 eCraft2Learn| Horizon 2020 | 731345

35

In order to 3D print a model, the software model needs to be converted to a specific file format that

the printer can process. The most commonly used format for 3D printers is the STL file format. The

process of generating an STL file from the 3D model includes a “repairing” step where the model is

checked for errors and printability. It should be noted that not all 3D software models can be printed

by all printers, especially due to structural constraints of the desired object, and limitations of the

printing apparatus.

After repairing the virtual 3D model, a slicer then decomposes it into thin layers that the printer can

handle. This information is included in a specific language (called G-Code) which tells the printer how

to print the 3D object, for example, telling the printer to move the output nozzle to a specific location,

activate the material injection, and so on.

The 3D printing process itself can range from several minutes to several hours or even days, depending

on the size of the object and the material being used. The final 3D printed object normally needs to

go through a final finishing step, for removing support scaffolds, sanding, colouring, etc.

3.4.2. 3D MODELLING SOFTWARE

The aforementioned 3D printing process contains key components for the eCraft2Learn project: 3D

modelling software and the 3D printer. Deliverable 4.2 will focus more on the 3D printer hardware, so

in this section, we focus only on the 3D modelling software. The aim is to find a 3D modelling software

that is:

- easy to use (moderate learning curve)

- 3D printer friendly (can export STL files or communicate directly with 3D printers)

- free and open source.

In the following, a list of possible 3D modelling software that can be used in this project is

presented.

3.4.2.1. TINKERCAD21

TinkerCad is a member of a family of software from Autodesk called 123D, which are all freely available

to users. The family includes many applications such as 123D Design, 123D Make, 123D Sculpt, etc.

Unfortunately most of the members of this family will soon be discontinued or shut down. Autodesk

aims to replace most of these with a single application called Fusion 360 (we will discuss Fusion 360

separately). One of the few parts of 123D that will not be shut down is TinkerCad.

TinkerCad is a Web-based, solid modelling tool aimed for anyone new to 3D modelling. It has a simple

and easy to use interface. The user designs 3D objects using basic shapes (cube, cylinder, etc.) to create

3D objects. It has a multi-language interface with support for 15 languages at the time of writing

(Finnish and Greek are not currently supported). The users can share their designs through

Thingiverse, a community for 3D printable resources. There are also a lot of online resources and

videos on how to use TinkerCad for different design purposes.

21 www.tinkercad.com

© 2017 eCraft2Learn| Horizon 2020 | 731345

36

On a more advanced level, TinkerCad allows the users to employ Autodesk’s Shape Script API to define

shapes programmatically. These shapes can be added to the interface as basic building blocks of more

complex shapes or used directly.

Figure 18: A screenshot of TinkerCad. On the right panel the basic shapes are presented that can be used as
basic building blocks for other shapes. Each shape can also be defined as a “hole”, which basically means it

will be subtracted from the original shape. For example in the above design, it is possible to define the
orange cylinder as a “hole”, which in turn creates a cylindrical hole in the red cube. Please also notice the

icon on the top right that directly connects TinkerCad with Thingiverse.

3.4.2.2. BLOCKSCAD22

BlocksCad is a Web-based 3D modelling tool that uses code blocks to define and render a 3D shape.

This can be a very useful tool to learn 3D concepts such as translation, rotation, etc. It uses the same

code block logic as other code block languages (Scratch!, Snap, etc.). This approach helps the learner

to focus on 3D modelling concepts, while using a familiar block-based programming paradigm. Using

BlocksCad, the learner can shape basic 3D elements and adjust them to specific project needs.

BlocksCad can also generate .STL files, for sharing with other 3D platforms and/or outputting to 3D

printers.

Figure 19: A screenshot of BlockCAD. The 3D model on the right is rendered from the block code developed on

the left side.

22 www.blockscad3d.com

https://www.blockscad3d.com/editor/

© 2017 eCraft2Learn| Horizon 2020 | 731345

37

3.4.2.3. OPENSCAD23

OpenSCAD uses a 3D programming approach in which the user writes code that will be rendered to a

3D model. In contrast to BlocksCAD, OpenSCAD facilitates the development of more complex shapes.

However, achieving such complexity requires more programming knowledge. OpenSCAD is an open

source application for Linux, Windows and Mac OS platforms. It is possible to use external 3D editors

for OpenSCAD, and OpenSCAD may also be used in command-line mode. OpenSCAD can also export

and import .STL files, which is useful for 3D printing and sharing purposes.

Figure 20: A screenshot of OpenSCAD. The 3D model on the right is rendered from the code on the left.

3.4.2.4. FUSION 36024

Fusion3D is Autodesk’s new 3D modelling platform, to replace the 123D family of products. It offers

free access to teachers, learners, hobbyists, and startups. Fusion 360 is a desktop application that can

be used for CAD, CAm and CAE on Linux, Windows and Mac. The interface is designed for professional

users, but is relatively easy to learn. Autodesk provides a lot of instructional material for Fusion 360,

and related third-party online resources are also available. Fusion 360 also has built-in functions for

directly interacting with 3D printers.

23 www.openscad.org
24 http://pixologic.com/sculptris

http://www.openscad.org/index.html
http://pixologic.com/sculptris/

© 2017 eCraft2Learn| Horizon 2020 | 731345

38

Figure 21: Fusion 360

3.4.2.5. SKETCHUP25

SketchUp is a 3D modelling application for Windows and Mac OS. It comes in two versions: SketchUp

Make and SketchUp Pro. The Make version is aimed at high school students and hobbyists and is free

to use. SketchUp uses 3dwarehouse as its 3D model sharing platform, a service which makes possible

the repair and export of 3D models as .STL files for printing and/or sharing.

Figure 22: SketchUP

3.4.2.6. SCULPTRIS26

In contrast to most 3D modelling software focused on engineering and production, Sculptris allows

the user to design objects by forming virtual clay into the final desired form. This approach might be

25 www.sketchup.com
26 http://pixologic.com/sculptris

http://www.sketchup.com/
file:///D:/cmontero/Documents/H2020_Proposals/MAKERobots2016/Accepted/Deliverables/WP4/(http:/pixologic.com/sculptris

© 2017 eCraft2Learn| Horizon 2020 | 731345

39

of special interest to art students and teachers. Support is offered to learners through the community

of Sculptris users, and other online sources and tutorials are also available.

Figure 23: Sculptris

3.4.2.7. FREECAD27

FreeCAD is a free and open source parametric 3D modelling software. Users and developers can also

develop Python scripts for FreeCAD to achieve different goals, e.g. to build customised models, extend

FreeCAD functionality, or embed it in another application. FreeCAD can also be used in command-line

mode. FreeCAD has a strong online community that offers support to learners.

Figure 24: FreeCAD

3.5. DIY TECHNOLOGIES

The acronym DIY is short for Do-It-Yourself, which in a broad cultural sense, refers to the ability of lay

persons (rather than specialised professionals or experts) to build, modify, or repair various entities

such as electronic and mechanical devices. In our context, the DIY principle is specifically related to

27 www.freecadweb.org

https://www.freecadweb.org/

© 2017 eCraft2Learn| Horizon 2020 | 731345

40

the setup of electronics-based systems using household or hobbyist hardware. Such projects can be

further extended with 3D printing (described above), which allows individuals to design and print

physical components to augment household elements and commercial hobbyist kits.

eCraft2Learn is strongly inspired by the Constructionist learning by making philosophy and method,

which is based on using easily accessible technologies. In contrast to hardware which is expensive,

complex, or provided as a black box, the goal to educate future generations of empowered and aware

citizens implies a significant change in how to learn, by means of motivating and rewarding practical

experiences(Fourie & Meyer, 2015). Currently available DIY electronics, with its associated concepts

of ‘open source’, ‘open innovation’ and ‘peer learning’, reduces the barrier to ‘learning by making’.

This section provides a brief introduction to the main DIY technologies we plan to adopt in the

eCraft2Learn project. Arduino and Raspberry PI are of major interest, while the other approaches

listed here could be easily integrated into the ecosystem we are developing. Combining a DIY approach

with robotics projects offers a strong emotional impact to learners, as they explore the psychological

and sociological aspects of the human-robot interactions.

3.5.1. Arduino28

Arduino is a platform comprised of open-source hardware and software to promote the design and

realization of low-cost digital devices able to interact with the surrounding environment through

sensors and actuators (the software IDE is described in detail above). The success of this initiative,

started in Italy in 2003, is due to the effort to standardise crucial aspects such as pin layout, board

resources, connectivity and expandability. The hardware reference designs are provided under a

Creative Commons Attribution Share-Alike 2.5 license, and the source code for the IDE under the GNU

General Public License v. 2.

Several producers of Arduino boards are presently on the market, together with producers of Arduino-

compatible products (these usually avoid directly using the Arduino name). Arduino boards (at the

time of writing, 17 official types with additional format variations) use various microprocessors and

controllers, although the software tools described above make it relatively easy to program standard

applications for these boards. The layout of pins permits interfacing basic boards with expansion

boards (shields), typically stacked in a vertical arrangement to remain compact. Several producers sell

starter kits that include one or more Arduino boards, sensors, motors, LEDs, resistors, wires, and other

components to help learners tinker with these components and to build meaningful devices.

28 www.arduino.cc

http://www.arduino.cc/

© 2017 eCraft2Learn| Horizon 2020 | 731345

41

 Figure 25: An Arduino board Figure 26: An Arduino starter kit

3.5.2. ARDUINO-BASED ROBOTS

Some Arduino kits include components for building sensor-based mini-robots: a rigid structure,

controllable motors with or without encoders, sensors suitable to realise usual robotic behaviors such

as line following, obstacle avoidance, etc. We include here also those kits that use Arduino-compatible

hardware (see for example mBot www.makeblock.cc/mbot/). These kits offer the same tinkering

possibilities of other simpler starter kits but they have a higher ceiling, in that the learner can

eventually create autonomous robots that interact with the physical environment through sensors. As

with other Arduino projects, the robots do not need to maintain a permanent connection with the PC

used to program them. Other programming environments provide similar features but using a block-

based language (e.g. mBlock). Some examples of Arduino robotic kits are listed here:

- Elegoo (www.elegoo.com)

- BYOR (http://byor.scuoladirobotica.it/en/homebyor.html)

- Arduino Robot (https://www.arduino.cc/en/main/Robot)

- Elecfreaks Robot Starter Kit (http://www.elecfreaks.com/estore/freakscar-robot-starter-kit-

741.html)

- Multiplo Robot Kit (https://github.com/multiplo)

- Parallax Robotic shield kit (https://www.parallax.com/product/130-35000).

http://www.elegoo.com/
http://byor.scuoladirobotica.it/en/homebyor.html
https://www.arduino.cc/en/main/Robot
http://www.elecfreaks.com/estore/freakscar-robot-starter-kit-741.html
http://www.elecfreaks.com/estore/freakscar-robot-starter-kit-741.html
https://github.com/multiplo
https://www.parallax.com/product/130-35000

© 2017 eCraft2Learn| Horizon 2020 | 731345

42

Figure 27: Arduino-based robots:

(l-to-r Elegoo, BYOR, Arduino Robot, Elecfreaks, Robot Starter kit, Multiplo, Parallax Robotic shield kit)

3.5.3. RASPBERRY PI29

The Raspberry Pi (RPi) is a small single-board computer produced by the (UK) Raspberry Pi Foundation.

One of the aims of the foundation is to offer a low-cost entry point into computing, which serves to

promote the teaching and learning of basic computer science to students and individuals, including in

developing countries. It has also become a platform for the Maker movement due to its low cost, as

well as its native free and open-source Linux OS.

Raspberry Pi’s have an additional benefit, beyond their ability to be used in specific Maker projects. In
particular, because they are fully functioning computers with desktop capabilities, they can be used
as a host to run most of the software described in this document, including but not limited to web-
based applications. For example, an Arduino can be programmed by running the Arduino IDE on an
RPi system that interfaces with the Arduino.

Given the relative low cost of the RPi, it is promising for inclusion into the eCraft2Learn ecosystem,
and may be used in place of a traditional desktop computer. This can eliminate the need for computers
in schools that may be lacking in number, or that may require special administrative oversight. Since
the standard RPi OS is a GNU/Linux distribution (called “Raspbian”), it can also facilitate computer
literacy through the GNU principles of transparent computing aimed at learners and makers.

The current main product line includes the Raspberry Pi 3 Model B that is bundled with on-board WiFi,

Bluetooth and USB boot capabilities. These features are also present in the smaller and cheaper

Raspberry Pi Zero board. Peripherals are not provided together with the basic board but several

bundles include accessories for building a complete system with the power of a small PC. All models

feature a Broadcom System-On-Chip (SOC) that integrates an ARM-compliant CPU and a GPU. Most

29 www.raspberrypi.org

https://en.wikipedia.org/wiki/Broadcom
http://www.raspberrypi.org/

© 2017 eCraft2Learn| Horizon 2020 | 731345

43

boards have USB ports, HDMI and composite video output, a phone jack and they include also GPIO

pins supporting general protocols like I2C. The B-models have an Ethernet port, and some also have

802.11n WiFi and Bluetooth.

The OS and applications are stored on an SD card in either the SDHC or MicroSDHC sizes. Its native OS

is Raspbian, a Debian-based Linux distribution, but other possibilities are also available (Ubuntu,

Windows 10 IoT Core, Risc OS and others). RPi supports Python and Scratch, along with most any

software that runs on Linux. The current RPi 3 integrates a Broadcom BCM2837 SoC, 1.2 GHz 64-bit

quad-core, ARM Cortex-A53 architecture, 512 KB shared L2 cache, 1 GB of RAM. The video controller

can emit standard modern TV resolutions (HD and Full HD), together with higher or lower monitor

resolutions. RPi boards also support the HAT (Hardware Attached on Top) principle for expansion

boards.

Figure 28: Raspberry Pi 3 board Figure 29: Shield stacked on a Raspberry board (HAT)

3.5.4. RASPBERRY PI-BASED ROBOTS

As with the Arduino, there are also robotic kits based on the Raspberry Pi board. The relative

capabilities of the electronics (significantly more than Arduinos) and the flexibility of a full desktop-

level software environment (also more powerful than Arduinos) can facilitate the development of

much more elaborate and intensive applications. Examples of kits:

- GoPiGo (https://www.dexterindustries.com/gopigo/)

- BrickPi Starter bundle (https://www.dexterindustries.com/brickpi/)

- CoderBot (http://www.coderbot.org/en/index.html).

3.5.5. WEMOS30

Apart from Arduinos and RPis, other platforms are also on the market. Wemos is one of the series of

boards based on the ESP-8266 chip, a low-cost, Wi-Fi powered component with a full TCP-IP stack

microcontroller capabilities, particularly suitable for building Internet-of-Things (IoT) structures. Some

interesting features of this architecture are: 32-bit RISC CPU, 64 KB instruction, 96 KB data, 16 GPIO

pins, one 10-bit ADC, integrated UART. The ESP-8266EX chip equips, for example, the Wemos D1 mini

30 www.wemos.cc

https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://www.dexterindustries.com/gopigo/
https://www.dexterindustries.com/brickpi/

© 2017 eCraft2Learn| Horizon 2020 | 731345

44

Pro board, which includes a 16 MB flash memory, a micro-USB socket and a ceramic antenna. One

relevant aspect is the possibility to program the board using the standard Arduino IDE. Wemos

provides also a Raspberry Pi reference card to combine the two cards’ features through the HAT

principle. Wemos also produces some extension shields (e.g. a motor shield, depicted below).

Figure 30: Wemos D1 mini Pro Figure 31: A Wemos shield

Figure 32: Wemos reference card for Raspberry Pi

3.5.6. OTHER EDUCATIONAL ROBOTS

While Wemos does not specifically target robotics or educational applications, it is possible to use

their hardware in these settings. There are other pre-packaged educational robotic kits (beyond those

mentioned above) that could be relevant to the eCraft2Learn project, for example:

- Lego Mindstorms EV3 (www.mindstorms.lego.com): This robot is usually programmed using

its native EV3-G environment, but its architecture permits other approaches. An integrated

SD socket makes it possible to boot different OSs and therefore to support different

programming environment. For instance, an experimental Scratch extension called

EV3+Scratch connects the EV3 reality to Scratch.

- Finch (www.finchrobot.com): This is robot kit is designed for engaging learners in computer

science. Equipped with accelerometers, motors, buzzer, LED, temperature and obstacle

© 2017 eCraft2Learn| Horizon 2020 | 731345

45

sensors, and drawing capabilities, it supports a dozen programming languages and connects

with multiple development environments.

Figure 33: Lego Mindstorms EV3 Figure 34: Finch

4 FRAMEWORK, ARCHITECTURE, AND UNIFIED USER INTERFACE (UUI)

4.1. FRAMEWORK

One long-term goal of this project is to create a technical solution to be used in educational

environments. Flexibility and adaptability are key aspects of the proposed ecosystem. The diagram

below shows an overview of the framework.

Pedagogical

Technological

Business

• Developing craft- and problem-based learning innovation
management

• Developing crafts- and problem-based pedagogical
framework

• Establishing communication with online support
communities

• Implementing participatory design to learning designs

• Integrating eCraft2Learn into current curriculum

• Facilitating attitude change with the integration of maker
movement practices

• Developing an unified user interface for design and
creation of computer-supported artefacts

• Providing real-time analytics for teacher support

• Establishing network collaboration among industry,
academy and teachers for integrating the maker
movement into schools

• Opening doors to turn innovative end-products to
market-products

• Holding Industry-academy lead workshops and
dissemination events

Figure 35: eCraft2Learn objectives (PO1-5, TO1-3, BO1-3) and their interrelations

© 2017 eCraft2Learn| Horizon 2020 | 731345

46

The pedagogical (PO1-5) and technical (TO1-3) objectives assume that the proposed interface solution

is evaluated across the lifetime of the project. Thus, there is a need for collecting data about what the

users do while taking part in the activities, to contribute to the evaluation.

4.2. ARCHITECTURE AND UNIFIED USER INTERFACE (UUI)

The proposed interface will allow minor as well as major modification during the lifetime of the

eCraft2Learn project. One of the challenges of the project is to allow the whole system to adapt to

specific user categories (learner, teacher/coach, administrator). In order to test the proposed

architecture, and its components, an initial generic user interface has been designed. This is termed

the unified user interface (UUI).

The UUI is organised as a dashboard where users might easily add or remove components (see

diagram below). The UUI features a central section where learning contents are available to learners.

The teacher can choose, delete, and create icons (or “cards”) from the learning objects repository,

which is linked to several virtual learning management systems (e.g. Moodle, etc.). On the right side

of the UUI, the students can access default management and planning tools. The planning tools are

interchangeable and other options could be chosen based on learner and teacher needs.

Figure 36: eCraft2Learn UUI architecture

On the bottom of the UUI we have our toolkit section. Interchangeable small icons bring the students

to tools such TinkerCad, Arduino Create, Fritzing, and others (described above). The web-based

© 2017 eCraft2Learn| Horizon 2020 | 731345

47

interface would enable learners and teachers to directly program an Arduino board and/or send 3D

creations to a 3D printer.

The UUI will also feature an artefacts/project repository, where learners and teachers can access other

creations and share their own creations. The artificial intelligence layer will connect with the UUI

architecture layer to collect data and adaptively generate suggestions for the users.

Our UUI also relates to the five stages of our educational approach (ideate - plan - create - program -

share). In the above diagram, in the central (main) area, we have tools for ideation and exploration

(stage 1). On the right side of the UUI, we have the planning and managing (stage 2). And on the

bottom, we have creating and programming (stage 3 and 4). Sharing and showcasing (stage 5) is also

found on the right side of the interface, together with the planning options.

5 SUMMARY AND CONCLUSIONS

5.1. SUMMARY OF THE TECHNOLOGIES

We identified a wide range of technologies that have the potential to be included in the eCraft2Learn

ecosystem. Appendix C presents a tabular overview of all of them. The table lists each technology and

allows for a comparison based on simplicity, costs, attached communities, and capabilities for

interfacing with other tools/systems.

We focused here on software, and also indicated some basic hardware possibilities (WP4.2 will explore

in greater detail the hardware and robotics technology platforms). We looked at virtual learning

environments (VLE), programming languages, programming environments, artificial intelligence

services, and modelling tools/computer aided design (CAD).

We considered VLE systems such as Moodle and ILIAS, which enjoy wide deployment and large user

and developer communities. We highlighted programming languages and related technologies,

including Arduino, Processing, SCRATCH, Snap!, JavaScript and HTML5. We also assessed Artificial

Intelligence Services that may be bundled with projects (IBM Watson, Google AI Cloud, Microsoft

Cognitive Services, and Amazon AWS).

Members of the eCraft2Learn consortium also conducted a SWOT analysis of programming

environments. After an initial screening of the programming environments, and a further assessment

in relation to the objectives of the eCraft2Learn unified user interface (UUI), we narrowed the

selection. The programming environments under consideration included: AgentSheets & AgentCube;

ToonTalk Reborn; Squeak/Smalltalk; Alice; Greenfoot; Kodu; Minibloq; Modkit; Microsoft Small Basic;

Mama; Snap!; ArduBlock; Makeblock and mBlock; Wyliodrin; Visualino; Bitbloq; Blockly for Arduino;

and Netlabtoolkit.

© 2017 eCraft2Learn| Horizon 2020 | 731345

48

5.2. CONSORTIUM RECOMMENDATIONS

Based on the considerations discussed in the previous sections, and the joint analysis of the

technologies by the consortium members (summarised in the Appendices), the following

recommendations were agreed upon for inclusion in eCraft2Learn: Arduino and Raspberry Pi for

hardware circuit building, SCRATCH and Snap! for developing code to run on the hardware, Processing

and Python for learning and understanding code, and HTML5/Javascript for the basis that will support

the UUI. This would allow the UUI to remain transparent to the teachers and learners, who may also

learn how it is constructed, and eventually contribute extensions to it through a sharing community.

With their strong focus on education and learning, the Fritzing and Arduino Create development

environments were identified as especially well matched to the proposed eCraft2Learn ecosystem.

TinkerCad and SketchUp for 3D modelling were also identified well-matched to our eCraft2Learn

objectives.

The selection of appropriate programming languages and environment for the eCraft2Learn platform

required a number of discrete steps: collecting resources, understanding the broader ecosystem that

includes the learner and teacher perspectives to elaborate requirements, adding selection criteria

related to broader concerns of administration and development, and finally mapping the selections

to the overall project objectives.

The proposed programming languages and environments were analysed in terms of how well they

enabled communication and collaboration in STEAM education, how user-friendly their approach was,

and, in addition, how well they fit to both formal and informal education. The solutions proposed were

favoured for their simplicity of use, cost effectiveness, adaptability to curricula and time restrictions,

and openness for creativity and collaboration by learners and teachers.

© 2017 eCraft2Learn| Horizon 2020 | 731345

49

6 REFERENCES

Bdeir, A. (2009). Electronics as material: littleBits. In Proceedings of the 3rd International Conference
on Tangible and Embedded Interaction (pp. 397–400). Cambridge, United Kingdom: ACM.

Carroll, J. M. (2000). Making use: scenario-based design of human-computer interactions. MIT Press
Cambridge, MA, USA.

Fourie, I., & Meyer, A. (2015). What to make of makerspaces: Tools and DIY only or is there an
interconnected information resources space? Library Hi Tech, 33(4), 519–525.

Greenberg, S., & Fitchett, C. (2001). Phidgets: easy development of physical interfaces through
physical widgets. In Proceedings of the 14th annual ACM symposium on User interface
software and technology (pp. 209–218). ACM New York, NY, USA.

Mellis, D., Banzi, M., Cuartielles, D., & Igoe, T. (2007). Arduino: An Open Electronic Prototyping
Platform. In CHI: ACM Conference on Human Factors in Computing Systems.

Papert, S. (1980). Mindstorms. Basic Books New York.

50

7 APPENDICES

APPENDIX A - PROGRAMMING LANGUAGE TABLE

Table 1: Programming Language

Programming

Language
Partner

Include

(Y/N)
Strength Weakness Opportunity Threats

Basic All N Easy to learn Limited for today’s needs Used by MS Closed

Logo

All N Scratch‘s basis Old
Grounded all educational languages
and tools

 none

UNIPD N Pedagogically sound and effective Already ‘implied’ by other choices (Scratch, Snap) - -

Pascal>Delphi All N Elegant language Not easy to learn Used in scientific field

 Complicated solutions,
may lead to too simple

project, and lack of

motivation

Python

UNIVDUN Y
Intermediate step between HW and WEB

application
Require basic programming skills fast growing None

UNIPD Y Of interest as intermediate language /tool Textual, not very easy
Current relevant interest and wider
and wider knowledge

-

ARD Y
Relatively easy (compared to other
languages) to understand/learn, forgiving

Harder than visual programming
It is widely used, and the knowledge
would be instantly applicable

-

EDUMOTIVA Y
Easy, good support, useful, can be used on
Arduino and Raspberry Pi, lots of

scientific libraries

Textual, not visual on its original programming

environment
Widely spread -

EVOTHINGS Y
Easy to learn, many hw platforms

available
Interpreted language, performance issues - -

Ruby

UNIVDUN Y/N Scripting for Sketchup Not easy to learn/textual Widely spread None

© 2017 eCraft2Learn| Horizon 2020 | 731345

51

Programming

Language
Partner

Include

(Y/N)
Strength Weakness Opportunity Threats

Visual Basic

UNIVDUN N Powerful language Exclusive Microsoft Widely used

Connected to Microsoft

strategies

C/C++

(Arduino)

UNIVDUN Y Very powerful language Not easy to learn Suitable both for Hw and Sw None specific

UNIPD Y Strictly related to Arduino
Textual (but it can be used as an intermediate

language of other graphical languages)

Code downloadable onto an Arduino

board to be run autonomously
 -

ARD
Y

(biased)
Relatively easy (simple functions, etc.)

Textual(Not as easy to learn as visual programming

tools)

Widely used, large and community

that can support the learning process
 -

newLISP

All N

advanced language Complex to learn Used in several area none

Processing

UNIVDUN Y Visual applications development For advance use, basic programming skills required Widely used for education MIT licence

UNIPD Y

A computer running a Processing

application can interact with an Arduino

board

 -

Processing is a flexible software

sketchbook and a language for
learning how to code within the

context of the visual arts

 -

ARD Y

Easy to setup I/O communication between

Processing and I/O board(such as Arduino)

Textual - relatively easy to learn, but does require
basic knowledge about programming

Visual output that suitable for
showcasing purposes

 -

Oz All N Advanced language Not so well known Education oriented language

Complicated solutions,
may lead to too simple

project, and lack of

motivation

JavaScript[1]

UNIVDUN Y SNAP! is implemented with JS Not easy to learn

Extend the ToonTalk Reborn

language.
Overcame limitation of Server

 none

UNIPD Y
Snap! is developed in Javascript,
thus new blocks can be programmed in JS

and added to the language

Textual, only partly Java inspired Extensions to Snap! -

ARD Y JavaScript is textual, and not as easy to learn
JavaScript is widely used, and directly

applicable knowledge
-

© 2017 eCraft2Learn| Horizon 2020 | 731345

52

Programming

Language
Partner

Include

(Y/N)
Strength Weakness Opportunity Threats

EDUMOTIVA Y

Widespread in web development, cross

platform from PC, mobiles, smart TVs.
Can use a block type of programming like

blockly for students which is javascript

based

Not easy to learn. Need also knowledge of HTML,
css.

Problems with old web browsers

Widely used -

EVOTHINGS Y Largest language on earth Versioning on older browsers
JS is finding its way also into
embedded systems

-

HTML5

UNIVDUN Y Pages for Web Some old browsers don’t support it Widely spread none

ARD Y Easy to learn
Doesn’t have much in common with programming
languages(it’s a markup language)

Directly applicable knowledge

Needs javascript and

css to impress anyone,
and can therefore be

difficult to teach

 EDUMOTIVA Y

Easy to learn, widespread.

cross platform from PC, mobiles, smart
TVs.

Need of javascript, css.

Problems with old web browsers
 - -

XML

UNIPD not sure

Snap! saves programs in XML, so it is

relevant as a portable intermediate

language

 - a portable intermediate language -

ARD not sure Easy to learn

Can’t be used standalone - needs other languages to

become meaningful (little in common with other

languages)

Directly applicable knowledge -

JS-Eden All Y Powerful and recent Still early dev stage Java Script based none

Flash (Action

Script[2])

All N Interesting tool Old Widely spread Adobe licence

ARD N Relatively easy to learn - - Becoming obsolete

UEF N - Obsolete - Obsolete

EDUMOTIVA N Use modern technologies
Not easy to learn.

No wide documentation
 -

Obsolete, use custom

language not wide
spread

© 2017 eCraft2Learn| Horizon 2020 | 731345

53

Programming

Language
Partner

Include

(Y/N)
Strength Weakness Opportunity Threats

Swift

All N New elegant language Textual and complex to learn none none

UEF N - Vendor lock none -

UNIVDUN Y Modern - Open Source Apple’s baby...

EVOTHIGS N - Mostly mobile platforms None -

UNIPD Y Efficient, implemented in standard C -
Good for embedded system, e.g.

Raspberry PI
None

LUA

ARD Maybe Relatively easy to learn - none
Not sure how widely it
is used?

UNIVDUN N Free and Open Source Game scripting language Embedded into game engines Obsolete

EVOTHINGS Y
Very easy to learn, also for smaller

children
Not very widespread Make gamers interested in robotics -

© 2017 eCraft2Learn| Horizon 2020 | 731345

54

APPENDIX B - PROGRAMMING ENVIRONMENTS TABLE

Table 2: Programming Environments

Programming

Environment
Partner

Includ

e (Y/N)
Strength Weakness Opportunity Threats

AgentSheets &

AgentCube

All N Easy to use AgentSheets is very old - Obsolete

ARD N engaging through game design No ‘undo’, and not very user friendly None -

ToonTalk Reborn ARD Y Web based, very feature rich User interface can be improved
Using speech recognition and other

modern tech
 -

Squeak/Smalltalk All N Powerful tool Quite old Obsolete

Alice All N Easy to use Abstractions of programming concepts Widely spread Obsolete

Greenfoot All N Very simple to use Only for simple things Widely used None

Kodu
 All

N Nice interface Connected to game programming
 Microsoft

Proprietary

Minibloq

UNIVDUN N Clear graphical interface early development
Blocks translated instantaneously

into text code
 Sustainability

EDUMOTIVA Maybe

Stand-alone program, which does

not require Arduino, installed.
Apart from images has also code

Less known comparing to scratch None
further analysis

needed

ARD Maybe

You can see the board, block

language and textual
programming

 - -
further analysis

needed

Modkit

UNIVDUN N Polished interface $ 399.99 USD school licence Scratch family Proprietary

EDUMOTIVA N - It costs, it is not a sustainable solution - -

ARD N
Looks like a well thought through

and ok looking environment
Cost and not being open source -

further analysis

needed

Microsoft Small

Basic
UNIVDUN N Easy language Basic language Basic is widely used

 Microsoft

proprietary

Mama

UNIVDUN N Multilanguage Complex interface 3D programming Sustainability

ARD N -
Windows only, hard to engage kids of today
with dated 3D graphics

 - -

Snap!

EDUMOTIVA Y

Easy to use interface

Pure JavaScript implementation.
It runs in every modern browser.

lacks the community that the Scratch
website has.

Can create a eCraft2Learn version -

ARD Y
Easy to use, available in different

forms, open source
 - further analysis needed -

ArduBlock

UNIVDUN Maybe Typo proof

Arduino “plug-in”

Not simultaneous

block > text

 Arduino world Sustainability

ARD Maybe
Clear hierarchies in the block
code

Not simultaneous block and text, not sure if
available for web?

 - -

Makeblock and

mBlock
UNIVDUN N

Interesting programming

paradigm diverging from Scratch
Kickstarter project None Premature

© 2017 eCraft2Learn| Horizon 2020 | 731345

55

Programming

Environment
Partner

Includ

e (Y/N)
Strength Weakness Opportunity Threats

ARD N

Seems easy to use, and looks
good

Not open source, and seems hard to
integrate into anything else

 - -

Wyliodrin UNIPD Y

Web based platform compatible

with several embedded systems,
Arduino and RPI included

 -
Devices can be driven in a wireless

form
-

Visualino All Maybe Visual programming paradigm Early development stage Arduino World Sustainability

Bitbloq All Maybe Visual environment Not widely spread Arduino World Sustainability

Blockly for Arduino ARD Y Block language for programming Only Arduino
Simple, seems made for integration

with other software

RoboMind UNIVDUN Y

Visualization and text

Standard interface design

Pay for account (£4.50)

Programming real robots (e.g.

NXT)
None

OPEN Roberta

UNIVDUN Y
Looks good
Nice environment

 - Multi-platform None

ARD Y User friendly, great tutorial Only robots? Might be a gender issue Gender bias

netlabtoolkit

UNIVDUN N
Nice and real time control

feedback
Early development stage

Cloud based

Internet of Things

 Sustainability

ARD Maybe
Multi-platform, seems easy to

use(haven’t tried it)
In development(possibly buggy) - -

Fritzing

UNIVDUN Maybe
Good interface design

Simulator environment Arduino world None

ARD Maybe

Easy to understand, no need to

learn electronics symbols and
schematics

 - further analysis needed -

Arduino Create

UNIVDUN Y Completely web based Installing plug-in Large Arduino community
Dependent to

Browsers

ARD Maybe Web based Textual - -

© 2017 eCraft2Learn| Horizon 2020 | 731345

56

APPENDIX C - TECHNOLOGIES OVERVIEW TABLE

Table 3: Technologies Overview

Categories Technologies Considered Open Source/

permissive licence

Fee based

(company charges for use)

Virtual Learning Environments Moodle x x

Blackboard x

ILIAS x x

Google Classroom

Brightspace x

Sakai x

Programming languages BASIC

Logo x x

Pascal > DELPHI x

Python x x

Ruby x

Visual Basic x

C (family)

Arduino

x x

newLISP x

Processing x x

SCRATCH

SCRATCH For Arduino

x x

© 2017 eCraft2Learn| Horizon 2020 | 731345

57

Categories Technologies Considered Open Source/

permissive licence

Fee based

(company charges for use)

Snap! x x

Oz x

JavaScript
JSON [XML alternative]

JS-Eden

x

HTML5 x x

Flash x

Swifts x

Go x

LUA x

Programming environments AgentSheets &

AgentCubes

ToonTalk & ToonTalk

Reborn

x Some versions

Squeak/Smalltalk

Alice Some

NetLogo x

Greenfoot x

Kodu x

RoboMind some

Minibloq x

© 2017 eCraft2Learn| Horizon 2020 | 731345

58

Categories Technologies Considered Open Source/

permissive licence

Fee based

(company charges for use)

Modkit x

Microsoft Small Basic x

Mama x

ArduBlock x

Makeblock and mBlock

Wyliodrin some some

Visualino

Bitbloq

Blockly for Arduino x

OPEN Roberta

NTK

Fritzing x x

Arduino Create x x

Artificial Intelligence Services IBM Watson x In some cases

Microsoft Cognitive
Services

x In some cases

Google AI Cloud x In some cases

Amazon Alexa Voice

Service

x In some cases

modelling tools (CAD) TinkerCad x

BlocksCAD x x

© 2017 eCraft2Learn| Horizon 2020 | 731345

59

Categories Technologies Considered Open Source/

permissive licence

Fee based

(company charges for use)

OpenSCAD x

Fusion 360 x Just for Pro version

Blokify x

SketchUp x Some versions x

Sculptris x

Makers Empire x

3DMTP (3D Model To

Print)

 x

Art of Illusion x

3DSlash x

Doodle3D x

FreeCAD x

© 2017 eCraft2Learn| Horizon 2020 | 731345

60

APPENDIX D - SCENARIO ROLES / FUNCTIONS / TECHNOLOGIES

Table 4: Roles, functions and technologies

Specifications Teacher Students

Create activity

connect lesson plan materials with selections from project library

x

VLE project library search x

VLE create a new project x

Connect to school resource management for equipment availability / booking x

Organise students into groups

use interactive student assessment software to create balanced groups with clear skill levels

x

Fill out web form with skills, preferences x

Accept/modify auto-generated groups x

Select project(s)

use group skill level information to assign specific projects or project elements to groups/individuals

x

Browse suggested projects auto-matched to group/individual skill levels x

Select project with multiple sub-projects x

Assign (sub-)projects to groups/individuals x

Open project view with links to materials, software x

Design 3D model (software)

use interactive software interface to select model templates, add/resize elements, format for printing

 x

Select software app for designing model x

Import model from project library x

© 2017 eCraft2Learn| Horizon 2020 | 731345

61

Specifications Teacher Students

Open tool menu with model elements x

Add elements to model x

Resize/modify elements and connections x

Export/share model to printing format x

Select software app for print formatting x

Import model from repository (from newly added model or existing/shared model) x

Configure model for printing (size, resolution, etc.) x

Select printer for output x x

Verify/Dispatch print job x x

Print / assemble 3D model (hardware)

observe printing process, and as needed: cancel/restart, make adjustments in software, re-calibrate hardware

 x

Monitor print queue x x

Pause/Cancel print job x x

Add/replace raw printing material x

Collect and assemble printed pieces x

Design electronic circuit (software)

use interactive software to select components (e.g. LEDs), assign to pins, develop code-based instructions for electronic

behaviour (e.g. colour cycle, blink, sensor response, etc.)

 x

Select software app for circuit design x

Select software app for coding / compiling / hardware transfer x

Browse circuit design repository x x

© 2017 eCraft2Learn| Horizon 2020 | 731345

62

Specifications Teacher Students

Browse code repository x x

Create new circuit design x x

Create new code x x

Import circuit design from repository x

Import code from repository x

Modify imported circuit x

Modify imported code x

Export/share circuit design x x

Export/share code x x

Print reference schematic of circuit design x x

Transfer code to hardware (e.g. Arduino) x x

Build electronic circuit (hardware)

follow software-generated diagram for connecting chips, wires, components

 x

Select board / components x x

Access station for assembly x

Test hardware functionality x

Test (loaded) software functionality x

Modify component/wiring connections x x

Initiate overwrite of running code with new code x x

Assemble 3D printout with electronics build x

© 2017 eCraft2Learn| Horizon 2020 | 731345

63

Specifications Teacher Students

integrate 3D printout with electronic circuit (e.g. insert in simple enclosure, or run wires through channels for

distributed components such as LED ‘eyes’)

Access station for assembly x

Embed board, wiring and components x

Join internal wiring/components / Repair damaged connections x

Test embedded system functionality (monitor/modify moving gears, joints, etc.) x

Assess project(s)

observe physical project result, discuss project process, discuss broader lesson plan

x

Compare 3D model and 3D printout x

Compare circuit diagram and assembled circuit x

Observe (raw) code and running code x

Discuss work process and craftsmanship x x

Discuss relationship of project and lesson x x

Assign score/mark x

