Digital Fabrication and Maker Movement in Education
Making Computer – supported Artefacts from Scratch

Deliverable D3.2 – M10

Description of Use Cases

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 731345.
PROJECT DESCRIPTION

Acronym: eCraft2Learn
Title: Digital Fabrication and Maker Movement in Education: Making Computer-supported Artefacts from Scratch
Coordinator: University of Eastern Finland
Reference: 731345
Type: RIA
Program: HORIZON 2020
Theme: Technologies for Learning and Skills
Start: 01. January, 2017
Duration: 24 months
Website: https://project.ecraft2learn.eu/
E-Mail: office@ecraft2learn.eu

Consortium: University of Eastern Finland, Finland, (UEF), Coordinator
Edumotiva, Greece (EDUMOTIVA)
Mälardalen University of Sweden, Sweden (MDH)
Zentrum für Soziale Innovation, Austria, (ZSI)
The University of Oxford, United Kingdom, (UOXF)
SYNYO GmbH, Austria, (SYNYO)
University of Padua, Italy, (UNIPD)
Technopolis City of Athens, Greece (TECHNOPOLIS)
Evothings, Sweden (EVO THINGS)
Arduino, Sweden (ARD)
Ultimaker, United Kingdom (ULTIMAKER)
Linnaeus University, Sweden, (LNU)
DELIVERABLE DESCRIPTION

Number: D3.2, M10
Title: Description of Use Cases
Lead beneficiary: ZSI
Work package: WP3
Dissemination level: Public (PU)
Type: Report (R)
Due date: 30.10.2017
Submission date: 31.10.2017
Authors: Margit Hofer, Christian Voigt, Nela Salomon, ZSI
Contributors: Marie Ehrndal, ARDUINO
Stela Shiroka, SYNYO
Calkin Montero and Kati Määkitalo-Siegl, UEF
Ken Kahn, UOXF

Reviewers: Emanuele Menegatti, UNIPD
Kati Määkitalo-Siegl, UEF

Acknowledgement: This project has received funding from the European Union’s Horizon 2020 Research and Innovation Action under Grant Agreement No 731345.

Disclaimer: The content of this publication is the sole responsibility of the authors, and does not in any way represent the view of the European Commission or its services.
TABLE OF CONTENT

EXECUTIVE SUMMARY .. 6

1. Introduction .. 7

2. Aims and objectives ... 8

3. Sources used for Personas and Use Cases .. 8
 3.1. Interviews ... 8
 3.2. Analysis students questionnaire .. 9
 3.2.1. Restrictions ... 9
 3.2.2. Data Sets ... 9
 3.2.3. Results of first dataset ... 10
 3.2.4. Interactions .. 11
 3.2.5. Results of 2nd dataset ... 12
 3.2.6. Interactions .. 13

4. Personas ... 14

Use Cases ... 26
 4.1. Variations/Adaptation - building Robot .. 26
 4.2. My cool Flashlight school bag ... 29
 4.3. Greenhouse .. 31
 4.4. Prank machine .. 33
 4.5. Air pollution box ... 35

5. Conclusion and outlook .. 38

6. References ... 39

Annex 1: Interview Guideline Semi – structured ... 40
TABLE OF FIGURES

FIGURE 1: Students answers on their major topics of interest 10
FIGURE 2: Students estimate on their familiarity with new technologies 10
FIGURE 3: Age and topic of interest .. 11
FIGURE 4: Age and familiarity with new technologies 11
FIGURE 5: Topic of interest and familiarity with new technologies 12
FIGURE 6: Parent's preferred topic for child .. 12
FIGURE 7: Familiarity with new technologies ... 12
FIGURE 8: Preferred duration of workshop .. 13
FIGURE 9: Age and preferred duration of workshop .. 13
FIGURE 10: Age and familiarity with new technologies 13
FIGURE 11: Preferred topic and its familiarity with new technologies 14
EXECUTIVE SUMMARY

This deliverable continues the work of D3.2 by establishing further scenarios and enhancing one use case that has been presented in M5.

Since this deliverable is a continuation of the previous one, it neglects to repetitively outline the eCraft2learn’s aims, definitions of terms or the methodologies used (pl. See D3.2- Month 5) but focuses exclusively on the materials gained within this period and the resulting use cases and personas.
1 INTRODUCTION

“Crafting combined with programming is fundamental”!

Deliverable 3.2 - month 10 is an extension of the work performed in D3.2 - month 5. Thus, the second deliverable builds on the established methodology, explains necessary adaptations, outlines further use cases for eCraft2Learn technologies and processes and launches the first personas.

• The developed methodology for elaborating the use cases was followed to a great extent: the second set of co-created use cases exploits the inputs of the questionnaire for students (partner Technopolis), the interviews performed in WP 2 as well as the facilitators specific interviews.

Still, each of the cases has their own development ‘history’ and relies on different qualitative and quantitative inputs from actual users (students, teachers or facilitators) and experiences made by the project partners. Due to the holiday season, we directly integrated single teachers in concrete use cases and one-use case was tested in real (the Making robot use case was tested during the SciFestival in Finland) which allowed adaptation according to the experiences made within a different setting.

The possibilities to design, create and produce in programming and printing are extremely high, even with the ‘pre-selection’ of WP 2 of tools, the guiding pedagogical principles and the data analysis. Thus, very different ideas and use cases were developed. During this working period, we challenged several discussions on different topics. I.e. one major issue was the choice between pre-fixed tools vs. very basic elements for the students to work with. However, one has to note that there can’t be a ‘one-fits-all’ recommendation found in the use cases, since such a choice depends on many different factors. In this deliverable we tried to reflect these factors in the use cases and also within the personas. It reflects the variety of persons and conditions in different environments, rather than proposing solutions.

The structure of this document focuses on these two vital points - the use cases and personas - by shortly outlining the aims and objectives (section 2), a data analysis (section 3) for elaborating the personas (section 4) and the use cases (section 5). Chapter 6 gives also an outlook for the next possible use cases to be delivered in month 15.

1 Andrea Alessandrini, interview on 13 Juni 2017.
2 AIMS AND OBJECTIVES

The eCraft2Learn environment combines the new maker movement, open innovation, pedagogy and technology. In this manifold ecosystem the use cases shall help to focus on the intended user of the eCraft2Learn services, rather than on the technical challenges of how to develop those tools and services. The major aim of this set of deliverables (two further versions in month 5 and 15) is to reflect on the diversity of the end-users, captured in a combination of use cases, user stories and design claims, including the description of personas (month 10 and month 15). It puts its focus on possible application scenarios and on integrating feedback from stakeholders. As outlined in the DoA of eCraft2Learn, the use cases will be developed particularly for providing also insights into:

1. Preparation, planning and logistics of - formal and informal - learning units,
2. Orchestration of subsequent learning events and
3. Impact (like empowerment of learners), especially in formal settings.

Thus, this deliverable outlines on a more practical level the implications, needs and organizational necessities for the target group (i.e. What learning model will be chosen? or How do we operationalize the open learning or the making?) as well as technical perspective (i.e. Which tools shall we include in the portal? How do we need to design the technical solutions in order to be user friendly?).

3 SOURCES USED FOR PERSONAS AND USE CASES

3.1. INTERVIEWS

As one source of qualitative information the interviews performed in WP2 (Deliverable 2.1) were used. Although the main focus of these interviews lays are the ecosystem of education, teaching and learning, some partial information revealed highly relevant information to be used for the personas as well as the use cases.

For this deliverable, we selected in total 15 interviews with teachers in Europe that were done by the partners. The interviews displayed information on the teachers’ day to day work, the environment they are embedded in, their needs and difficulties, their ambition and obviously their respective ecosystem. These interviews were used to develop different types of personas that reflect potential users for eCraft2Learn as well as to frame the fictive use cases.

For the adaptation of the ‘Robot building’ use case, a semi-structured interview/reflection guideline (Annex 1) was created with the aim to reflect on different factors of success and failures. Further, it allowed to adapt the initial ‘Robot building’ use case. For this, two persons were involved: for once the facilitator of the workshop, Andrea Alessandrini, LNU (online interview on the 13th of June), and Hanna Nygren, UEF (also online interview on 6 June 2017) observing the workshop from a pedagogical and organizational perspective. The fact that the students were asked afterwards for their impression, critics and assets they have gained from this workshop also led to a different view on the workshops and revealed improvements. Thus, the use case got adapted for this version of the deliverable accordingly.
3.2. **ANALYSIS STUDENTS QUESTIONNAIRE**

3.2.1. **RESTRICTIONS**

It has to be mentioned that a detailed and scientifically analysis is limited, due to the way they have been collected, to the number of answers and to the discontinuity of questions. Besides, answers are limited to Greek students, and thus there is a significant geographical restriction. However, for our major purpose – the collecting of indications for preferred topics, durations of workshops, pre-knowledge, etc. - the data are valuable input for constructing persona and use cases. Consequently, the data sets were each analyzed separately.

3.2.2. **DATA SETS**

In order to understand how the setting in a informal environment should be ideally designed, we targeted students who were visitors of science centres. Two datasets were made available from partner Technopolis, collected from Spring till Summer 2017 (questionnaire in Annex of D3.2 - Month 5). The questionnaire was filled out either by the guiding parents or (depending on the age) by the students themselves.

One set consisting of 130 observed entities and the second data set of further 44. Four of the individuals of the second dataset were under 6 years old. Since that category is irrelevant for the purposes of this study, these observations were removed, leaving 40 in this dataset.

Due to the different wording of questions and significantly different underlying information and categories of the two datasets, fusing them was deemed rather unfavorable, and a separate analysis was necessary. Wherever possible and reasonable, comparisons were made.

Some incompatibility and incomparability arose mainly due to the following reasons:

i. The first dataset does not include information assessing the preferable duration of a workshop (as referred to by question 3 of the underlying questionnaire).

ii. The child's familiarity with the new technologies (question 8 of the underlying questionnaire) was assessed on a scale between 1-5 in the first dataset and 1-7 in the second one.

iii. The age categories of the subjects assessed in both datasets were significantly deviant from each other – while in the first one the categories were “12-13”, “14-15” and “15-17”, in the second dataset these were “6-8”, “9-12” and “12-15”.

While the interest in certain topics (as assessed by questions 2 of the underlying questionnaire) was by the questionnaire itself and first dataset addressing the interest of the child itself, in the second dataset this was worded as “Which of the following subjects do you find more attractive for your child to participate?”; thus asking for the parent’s interest instead of the child’s. It was assumed that each entry of “0” means a missing entry which was thus omitted from further analysis, except where it was
considered informative including the information. Graphs sometimes represent absolute numbers while others percentages. In most cases the choice fell on absolute numbers because of the small size of both samples, however sometimes the percentage dimension is also presented – whenever this is the case it can be recognized by the %-sign on the x-axis.

The variables “Familiarity with new technologies”, “Subject of interest” and “Preferred duration [of workshop]” were deemed of interest, as were the interactions of each of them with the variable “Age” and the one between “Familiarity [of child] with new technologies” and “Subject of interest”.

3.2.3. RESULTS OF FIRST DATASET

![Graph 1: Students answers on their major topics of interest](image1)

Of the 130 answers of the first dataset, 65 students (50%) were interested in topics of natural sciences and performing experiments, followed by 40 students who favored technology. As it can be seen in Graph 1, further 15, 6 and 4 students were interested in constructions, art and other topics respectively.

![Graph 2: Students estimate on their familiarity with new technologies](image2)

99 students (more than 60%) consider themselves sufficiently or to a great degree familiar with new technologies.
3.2.4. INTERACTIONS

The students' interest in experiments, Physics and Chemistry is a large majority, and there is no correlation with age and those interests. Only few are interested in construction and art. This result is not surprising, considering that the questionnaire were collected from visitors of a science communication centre, but it emphasizes the need for further efforts to raise the interest in arts, constructions and other sciences connected with crafting and technology.

FIGURE 3: Age and topic of interest

The majority of the students feel comfortable with new technologies (age group 14-15 and 12-13). Given the low number of answers from the age group of 15-17, no significant conclusion can be drawn. Thus, the eCraft2Learn has to consider also the fact that not all students feel sufficiently familiar with new technologies and might need to construct the environment accordingly.

FIGURE 4: Age and familiarity with new technologies
3.2.5. **RESULTS OF 2ND DATASET**

Comparing the data with the first dataset, the results are similar: most students are interested in Experiments/Physics/Chemistry and Technology.

Again, many students feel fairly comfortable with new technologies. 20% of this sample even state that they are highly familiar.
The majority of the students preferred duration of a workshop between 2-3 hours and 4-6 hours. Several students would dedicate 8-12 hours. Only one student would limit the workshop to 2 hours.

3.2.6. Interactions

Comparing the age group with the preferred hours, no significant indication can be given.

Given the low response of answers to the question, no reliable conclusion can be given, but the majority of the students feel more or less familiar with new technologies. This corresponds with the results of the first data set.
4 PERSONAS

Scenarios are a good tool for design, since they depict the work practices designers aim to support. However, their weakness is that they might not sufficiently be engaging. Personas are a method for enhancing engagement and reality. Thus, the aim of the different personas in this document is to increase the understanding of the end users that will teach and learn with the eCraft2Learn environment.

Persona build on the different scenarios and data collection and support the engagement. The following created personas build on the data collected (interviews and questionnaires) in the last period (M5-M10). Although based on facts, the personas are fictional people but they have names, age, gender, values, educational achievement, socioeconomic status life stories, goals and tasks etc. By describing personas, the potential users shall gain more emphasis in the development of the tools.

The following section describes several personas that might become potential users of the eCraft2Learn environment.
Susan is a Finnish secondary school science teacher and has a class of 20 fifteen-year-olds. Half of her class are female students. She is 35 years old, has two kids age 10 and 7 and she goes twice a week in a gym. Susan is very much interested in technology and was the driving force that her school bought a 3D printer for different projects. For her, it is important to build a collaborative learning environment in and outside of the classroom. The projects that she is launching with her students are mostly global themes and topics, sometimes even found in the local community. She believes that her role as teacher includes also to empower her students and encourage them for creative and critical thinking.
Nikos

42 – Teacher of Science and Music – Greece

Nikos lives in Athens and teaches Math, Physics and Music. He is 42 years old, is member of a band where he plays the drums. His other passions are robots and building different kinds of vehicles. With his older son, aged 9, he has built already several of them with different systems (Lego Robot, Clix, etc.). Thus, he is very fond of projects where students have to find ideas and craft their own creations. He is a teacher that pays high attention to the individual needs of students, and proposes tools that can be customized to these needs. He is very flexible allowing students to work with other tools, since he is of the opinion that each student needs to make his/her own experiences for learning. He supports the students and checks the progress from time to time but leaves it up to them to create, design, craft and program their creations. If a student has issues, he discusses with them the problem and guides them to possible solutions. Still, he is quite restricted within his curriculum but he is very creative in finding ways to combine both, project and curriculum requirements. This is also due to a very flexible headmaster that has high trust in Nikos and his way of teaching.
Petros age 28, has studied IT, Physics and Math in Greece. He decided not to continue with an academic career since he wanted to be closer to teaching. Thus, he took part in a training of an educational institution dedicated to enabling people to hold STEAM workshops with kids. Now he is working as a facilitator in a non-formal educational institution that fosters educational activities of new Technologies and STEAM. He believes that learning can be fun and that it should be combined with hands-on activities. He lets go of clutter and focuses on the essentials, thus on the principles that kids should understand. Petros has built already robots for several years from many different materials and is increasingly interested in the maker movements. He is member of an online maker platform where he supports quite often the makers that seek for creative solutions in programming or IT in general. Last year he was traveling to Rome to take part in a big maker faire.
Barbara is an Austrian teacher for Math, Biology and Crafting for secondary students. She is 37 years old, married, has three kids and loves to go hiking with her family. Her husband, Andreas, is teaching Math, Physics, Sports and IT. She is a very motivated teacher, knows how to spice up the classroom to engage the students and uses simulations and computer programs for her teaching in Math and Biology. She made good experiences with gamification of learning, although some of her teacher colleagues are rather critical with this kind of teaching. But she is acknowledged in her school as innovative and open person. She is convinced that also education has to be innovative and understands her teaching as the preparation of the students for the ‘real’ working life. She sees an issue with the fact that she has to fulfill the curriculum and at the same time the possibility to take part in so many interesting projects. Thus, she needs to be very selective in projects she launches. Due to the fact that she has only limited IT knowledge, she needs very clear and detailed instructions when she launches projects with IT inclusion. Luckily her colleague who teaches IT is a great team player and is often willing in launching projects together with her. She herself learned already a lot from these common projects, but she feels not confident enough to do her next crafting project herself (sewing bags with flashing lights).
Dimitris is a principal for a second-grade school with 400 students in Greece and before becoming the principal, he was teaching IT, Maths, Physics and Sport for more than 20 years. He comes out of a three generation of teachers, is married for 31 years and turns 55 next year. In his duties he has a lot of administrative tasks, but he is very interested in what innovations happen in education and tries to support his teachers in implementing these innovations. Often, they have to handle financial restrictions as well as restrictions due to the curriculum, but Dimitris tries to provide the teachers a good framework in which they can act flexibly. Thus, he is very open to collaborations also outside the school and tries to keep up with the technological development. He has high trust in his IT administrators and he knows that his team of teachers work very well by supporting each other in different projects and initiatives. When supplementing an IT lesson, he would like to give the students the possibility to explore with different systems and understand the basic principles behind it but also foster their soft skills like creativity, their ability of planning, collaboration and creation. At the same time, he looks out for systems that are easily accessible, moderate in costs and highly effective for the students.
Veikko is a 12-year-old student in Helsinki. Twice a week he attends the swimming training. He likes techno music, plays piano and is fond of online games and computers.

Veikko also has a younger sister, Neela, that just started school. Since they live a bit outside of Helsinki, both have to leave early in the morning to go to school. His favorite subjects at school are English and Sports. He is very fond of projects in school since he is a very creative youngster. Also at home he is persevering in crafting things. While reading Harry Potter in English, he decided to craft a magic wand for himself with sparkling lights when waved properly. With the help of his parents, a technical engineer and a lawyer, he managed to create his own wand.
Elena is a Greek student living in Athens. She is 17 years old and attends a higher private school. Her favorite subjects are Arts and French. She is very gifted in sewing and knitting and has designed for herself already several clothes and accessories like bags, scarves etc. She regularly visits websites and blogs that deal with fashion and design. She has a lot of friends that she meets in the community center, but of course she has much more ‘virtual’ friends in Facebook. Elena usually posts her creations there to present what she has done. She considers herself as an average student but she has difficulties in Maths and Biology since her interest in these subjects is really low. As a very creative person she likes collaborative projects with her classmates where she immediately takes care of really cool designs but leaves the conceptualization usually up to the others.
Noah
12 – Student – Austria

Noah can’t remember a time where there wasn’t some form of digital media in his home. He received a Nintendo DS at Christmas when he was 6 years old, and since then has moved up to a PlayStation3 videogame console. He is very active and involved in sports and loves going outside playing with his friends, with the Nerfs, or ride his bike. When his friends come over they often decide to stay indoor to play a computer game, even when it’s nice weather outside. He attends a public secondary school in Austria and during his summer holidays he visited a camp on robotics and programming. He is very proud of his first self-created robot and continued to expand a little online game he created himself in Snap! Noah is now 12 years old, but he is sure when he has finished the NMS (secondary school) he wants to go to a higher school that focuses on IT.
Bora is twelve and studies in a private international school in Albania. All her classmates have personal tablets and emails where they receive homework from their teacher. She is currently working on a historical drama project about the Austrian royal family of Habsburgs where she will represent the character of the Empress Maria Theresia. She loves history, languages and cultures and is mostly interested in female leaders because they show that girls can be powerful. Complementing the drama, Bora prepared a PowerPoint presentation with facts and figures about the Habsburgs and uploaded it in a shared folder of her Google drive. She is now searching Google for costumes fit for her drama character. In her free time, she likes playing with her little sister, teaching her English through YouTube videos, or talking to her friends through pictures on her Snapchat or Instagram.
Christoph is 41 and teaches physics in an Austrian public school. He is married and has two little children with whom he spends most of his free time besides playing and watching football with friends. The state given curriculum in physics is pretty strict and does not foresee much time for project-based learning during the school hours. The school financial resources have also been restricted and he can hardly find small means for buying equipment he needs for projects. Yet, the school lies in a rich area, so he engages students’ parents in funding projects and decides to cut off some lessons which he deems less important from the curriculum and dedicate the hours to projects. He certainly wishes he could have more time and resources to conduct great projects but he chooses to do what he can with what he has. He believes that letting students do things together can teach better physics and better social skills. Teamwork and social aspects are essential to him and include one of the focuses of his projects.
Ivana is 56 and has been teaching Biology and Chemistry in a Slovenian high school for her entire career. She is very fond of technology in general and especially technological innovations in the field of education. She believes that good IT skills should be a prerequisite for recruiting teachers, and enhancing their skills continuously keeping updated with technological advancements in the digital era, is essential for 21st century education. Around ten years ago, when her children moved out from home to pursue higher education she was left with more free time than earlier. Together with some teachers of her age, Ivana created a teacher’s team for projects integrating at least two STEM subjects. Since then, their school has been participating in national and international competitions winning important prizes and building itself a reputation. Some of the projects have brought up such successful innovations that have ended in collaborations with prestigious companies and patents. Almost all the project work is carried out in Ivana’s free time and financed with alternative means. Ivana considers this a hobby but regrets the lack of time of her colleagues who are interested in project work and educational technology but don’t have any time or resources available.
4.1. Variations/Adaptation - Building Robot

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/contributors</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2017</td>
<td>Andrea Alessandrini</td>
<td>First Scenario: Robot Building Workshop (Greek School)</td>
</tr>
<tr>
<td>May 2017</td>
<td></td>
<td>SciFestival - actual application of use case</td>
</tr>
<tr>
<td>June 2017</td>
<td>Hanna Nygren, Andrea Alessandrini, Margit Hofer</td>
<td>Reflection interviews with Hanna Nygren (observer) and Andrea Alessandrini (workshop facilitator)</td>
</tr>
<tr>
<td>October 2017</td>
<td>Calkin Montero, Hanna Nygren</td>
<td>Revision of original scenario based on the feedback of participants and interviews</td>
</tr>
<tr>
<td>October 2017</td>
<td>Margit Hofer</td>
<td>Slight corrections and final version</td>
</tr>
</tbody>
</table>
For the activity, an instruction manual of the steps to follow when using the virtual program (and also printing material if needed) needs to be prepared. Also, during the workshop, an Arduino Uno board connected to a Raspberry Pi computer was set up, as individual work stations for each group. When other software is needed, if there are no restrictions of installation, it is easy to install. The instructors should check that the necessary software are pre-installed and the programs run. In addition, recycled materials as well as crafts materials should be collected and made available during the activity development.

Description of Activity:

The instructor starts with a short introduction about what kids are supposed to do, what the process is and what the materials and tools to use are. The students are asked to form groups of 3-4 students and take a work station (Arduino board connected to a Raspberry Pi PC) and start working. In the SciFest version of the workshop, one group designed a square robot head, where the robot eyes are blinking one after another. Another group designed an elephant robot head - the eyes were supposed to be 3D printed, where the LEDs are set in the middle. Since there was not 3D printing available, the students set for using cardboard to create the eyes of the elephant. Students planned themselves, which recycled materials they need. They also decide what part they need to 3D print for the head. Students are dividing the tasks among themselves, and when the group member struggles with a task, the other members are ready to help: they seem to solve the problems by themselves. Instructions are following the processes and especially in 3D design and printing students need more guidance, because it is new for them all. Some problems with properly printing the 3D design meant that they needed to try printing again after adjusting their design. The instructor is helping by not giving direct answers but leading the group to check their design in order to print it correctly. At the end of the activity, the groups present and explain their creations for everyone else to see.

Other Stakeholders and their possible Interests:

Parents who provide positive feedback to their kids. Creative designers and makers with a positive attitude. Results also might interest companies and investors who might appreciate to have inspirations from young people.

Preparatory work:

For the activity, an instruction manual of the steps to follow when using the virtual program (and also printing material if needed) needs to be prepared. Also, during the workshop, an Arduino Uno board connected to a Raspberry Pi computer was set up, as individual work stations for each group. When other software is needed, if there are no restrictions of installation, it is easy to install. The instructors should check that the necessary software are pre-installed and the programs run. In addition, recycled materials as well as crafts materials should be collected and made available during the activity development.

Description of Activity:

The instructor starts with a short introduction about what kids are supposed to do, what the process is and what the materials and tools to use are. The students are asked to form groups of 3-4 students and take a work station (Arduino board connected to a Raspberry Pi PC) and start working. In the SciFest version of the workshop, one group designed a square robot head, where the robot eyes are blinking one after another. Another group designed an elephant robot head - the eyes were supposed to be 3D printed, where the LEDs are set in the middle. Since there was not 3D printing available, the students set for using cardboard to create the eyes of the elephant. Students planned themselves, which recycled materials they need. They also decide what part they need to 3D print for the head. Students are dividing the tasks among themselves, and when the group member struggles with a task, the other members are ready to help: they seem to solve the problems by themselves. Instructions are following the processes and especially in 3D design and printing students need more guidance, because it is new for them all. Some problems with properly printing the 3D design meant that they needed to try printing again after adjusting their design. The instructor is helping by not giving direct answers but leading the group to check their design in order to print it correctly. At the end of the activity, the groups present and explain their creations for everyone else to see.

Other Stakeholders and their possible Interests:

Parents who provide positive feedback to their kids. Creative designers and makers with a positive attitude. Results also might interest companies and investors who might appreciate to have inspirations from young people.

Preparatory work:

For the activity, an instruction manual of the steps to follow when using the virtual program (and also printing material if needed) needs to be prepared. Also, during the workshop, an Arduino Uno board connected to a Raspberry Pi computer was set up, as individual work stations for each group. When other software is needed, if there are no restrictions of installation, it is easy to install. The instructors should check that the necessary software are pre-installed and the programs run. In addition, recycled materials as well as crafts materials should be collected and made available during the activity development.

Description of Activity:

The instructor starts with a short introduction about what kids are supposed to do, what the process is and what the materials and tools to use are. The students are asked to form groups of 3-4 students and take a work station (Arduino board connected to a Raspberry Pi PC) and start working. In the SciFest version of the workshop, one group designed a square robot head, where the robot eyes are blinking one after another. Another group designed an elephant robot head - the eyes were supposed to be 3D printed, where the LEDs are set in the middle. Since there was not 3D printing available, the students set for using cardboard to create the eyes of the elephant. Students planned themselves, which recycled materials they need. They also decide what part they need to 3D print for the head. Students are dividing the tasks among themselves, and when the group member struggles with a task, the other members are ready to help: they seem to solve the problems by themselves. Instructions are following the processes and especially in 3D design and printing students need more guidance, because it is new for them all. Some problems with properly printing the 3D design meant that they needed to try printing again after adjusting their design. The instructor is helping by not giving direct answers but leading the group to check their design in order to print it correctly. At the end of the activity, the groups present and explain their creations for everyone else to see.

Other Stakeholders and their possible Interests:

Parents who provide positive feedback to their kids. Creative designers and makers with a positive attitude. Results also might interest companies and investors who might appreciate to have inspirations from young people.

Preparatory work:

For the activity, an instruction manual of the steps to follow when using the virtual program (and also printing material if needed) needs to be prepared. Also, during the workshop, an Arduino Uno board connected to a Raspberry Pi computer was set up, as individual work stations for each group. When other software is needed, if there are no restrictions of installation, it is easy to install. The instructors should check that the necessary software are pre-installed and the programs run. In addition, recycled materials as well as crafts materials should be collected and made available during the activity development.

Description of Activity:

The instructor starts with a short introduction about what kids are supposed to do, what the process is and what the materials and tools to use are. The students are asked to form groups of 3-4 students and take a work station (Arduino board connected to a Raspberry Pi PC) and start working. In the SciFest version of the workshop, one group designed a square robot head, where the robot eyes are blinking one after another. Another group designed an elephant robot head - the eyes were supposed to be 3D printed, where the LEDs are set in the middle. Since there was not 3D printing available, the students set for using cardboard to create the eyes of the elephant. Students planned themselves, which recycled materials they need. They also decide what part they need to 3D print for the head. Students are dividing the tasks among themselves, and when the group member struggles with a task, the other members are ready to help: they seem to solve the problems by themselves. Instructions are following the processes and especially in 3D design and printing students need more guidance, because it is new for them all. Some problems with properly printing the 3D design meant that they needed to try printing again after adjusting their design. The instructor is helping by not giving direct answers but leading the group to check their design in order to print it correctly. At the end of the activity, the groups present and explain their creations for everyone else to see.

Other Stakeholders and their possible Interests:

Parents who provide positive feedback to their kids. Creative designers and makers with a positive attitude. Results also might interest companies and investors who might appreciate to have inspirations from young people.

Preparatory work:

For the activity, an instruction manual of the steps to follow when using the virtual program (and also printing material if needed) needs to be prepared. Also, during the workshop, an Arduino Uno board connected to a Raspberry Pi computer was set up, as individual work stations for each group. When other software is needed, if there are no restrictions of installation, it is easy to install. The instructors should check that the necessary software are pre-installed and the programs run. In addition, recycled materials as well as crafts materials should be collected and made available during the activity development.

Description of Activity:

The instructor starts with a short introduction about what kids are supposed to do, what the process is and what the materials and tools to use are. The students are asked to form groups of 3-4 students and take a work station (Arduino board connected to a Raspberry Pi PC) and start working. In the SciFest version of the workshop, one group designed a square robot head, where the robot eyes are blinking one after another. Another group designed an elephant robot head - the eyes were supposed to be 3D printed, where the LEDs are set in the middle. Since there was not 3D printing available, the students set for using cardboard to create the eyes of the elephant. Students planned themselves, which recycled materials they need. They also decide what part they need to 3D print for the head. Students are dividing the tasks among themselves, and when the group member struggles with a task, the other members are ready to help: they seem to solve the problems by themselves. Instructions are following the processes and especially in 3D design and printing students need more guidance, because it is new for them all. Some problems with properly printing the 3D design meant that they needed to try printing again after adjusting their design. The instructor is helping by not giving direct answers but leading the group to check their design in order to print it correctly. At the end of the activity, the groups present and explain their creations for everyone else to see.

Other Stakeholders and their possible Interests:

Parents who provide positive feedback to their kids. Creative designers and makers with a positive attitude. Results also might interest companies and investors who might appreciate to have inspirations from young people.
Success and condition:

At the end of the workshop/activity, all groups are asked to present their creations to all and asked feedback about the implementation. Teachers experience that they have not seen the students working so well together and being so engaged on that kind of learning process. Even the girls were excited about the hands-on activities and arts and crafts and their ToyRobots look well designed and carefully made. As the groups got more experience they started to talk about how they could design and make more advanced ToyRobots, which would be more complicated and high-design product that reacts to voice, movement or light changes in the environment.

Failure and conditions:

Time considerations for taking the project to completion. For instance, during the SciFest experience, there was one group, where one of the group members had to leave earlier and the other two were not able to decide how to continue with the activity. Their robot head was a simple one and it seemed that the two members were not happy about the result: it was not the product they designed in the first place.

Barriers/Facilitators:

Barriers
Are the groups working well?
Grouping makes difference, to get students to work well with each other and make sure that they have time to work on their ToyRobot.
Is the given time sufficient for the workload?
Tracking the time is important. The students need to understand that the amount of time they have and the workload will be in good balance.
Do the students have the information they need to succeed? Role of the instructor/teacher/coach
A limitation arises if the students do not have any idea about how to build a ToyRobot and creativity is missing. The instructor is to intervene: how to guide them to be free of the limits set by their own mind set.

Facilitators
Motivation
Some students were keen on the idea that they can create and make a real product by themselves.
Peer networks and Internet Information finding, a powerful tool to fuel creativity.

Extensions:

From the robot head workshop to the ToyRobot activity the robots can advance towards becoming more interactive and reactive to changes in the environment. For instance; creating a robot alarm to wake the person up when it is day time; a robot guard to sound an alarm whenever someone trespasses a forbidden room; a talking robot that reacts to the close presence of people; etc.

Variations:

Some students would like to design projects with the LEDs lights embedded to the accessories of clothing. Students started to think also how they could for example help the elderly people for having them the robot with blinking eyes, when their phone is ringing in the other room.
4.2. **MY COOL FLASHLIGHT SCHOOL BAG**

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/contributors</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 July 17</td>
<td>Hofer, M. B. Fischbacher</td>
<td>Initial draft of Scenario</td>
</tr>
<tr>
<td>27 July 17</td>
<td>B. Fischbacher</td>
<td>Adaptations</td>
</tr>
<tr>
<td>3 August 17</td>
<td>Hofer, M, Voigt C., Unterfrauner E.</td>
<td>Discussion of scenario; testing with Arduino board</td>
</tr>
<tr>
<td>4 August 17</td>
<td>Fischbacher B.</td>
<td>Integration of feedback and change.</td>
</tr>
<tr>
<td>20 September 17</td>
<td>Ehrndal, M.</td>
<td>Some additional tech content</td>
</tr>
</tbody>
</table>
The flash light school bag

Description of environment and possible pre-conditions:

Veikko's teacher has asked them to build pairs and agree to a small project they would like to create. Veikko and his friend Pekka would like to do something of real usage that goes beyond playing or fun. Veikko and Pekka elaborate a plan to pimp' school bags: since they are leaving so early from home it is difficult for cars to see school kids in the dark, especially when there are no reflectors attached to the cool bags any longer (which leads often to discussions with his parents).

Thus, Veikko and Pekka decide to build a sensor for the school bag that would start flashing on his school bag once the light becomes low.

Preparatory work:

The teacher asked them to prepare a sort of 'concept' that outlines the idea behind, the usage, the materials and skills as well as knowledge they will need a.s.o. Thus, Veikko and Pekka start to investigate which components they would need and establish the list materials, the sensors, the LEDs they would need, a.s.o. The boys also consider the different circumstances for the design (i.e. snow and rain on the sensors and the Arduino board, ...). They hand over their written plan to the teacher and discuss with him the outline.

Description of Activity:

Four days later, the teacher has ordered the needed Arduinos and each of the students have brought additional materials with them. Veikko has brought his old school bag for testing since he is not sure how to attach the LED lights, if he would need to make some holes in the bag, a.s.o.

The teacher helps him plan how to mount the LED lamps on the bag, and also reminds the students they need to insulate the component legs to avoid a short circuit. Before they start building, the teacher helps the students to test the photo sensor with one LED, as a 'proof of concept'. They search online for how to connect the components on the breadboard, and use an Arduino example sketch that reads analog values and maps them into the range suitable for LEDs. They learn about statements, and how to set a threshold for the lights to turn on. After the core concept has been prototyped, the teacher asks the woodwork teacher to help the students solder the parts together. The teacher has helped them draw a circuit on paper to aid them as they solder everything together.

Once everything is connected, it won't light up. The students are very disappointed, and are not sure what to do next. The teacher tries to cheer them up, and shows them a systematic approach to troubleshoot the error. They use the serial monitor to make sure they are getting values from the sensor, and that the threshold is properly set. After that, they upload a code to light up the LEDs only. They don't light up, and one of the students suddenly finds it's because they have not properly insulated the LED legs. Once the whole circuit has been properly insulated, all the technology is working as planned.

Success and condition:

One week later Veikko is allowed to take his LED lights home for his sister. Together with his mother, they only need to sew a Velcro stripe on the outside lunch box case of his sister schoolbag. Veikko connects the cable with the components in the case, turns off the lights and immediately the LED lights start blinking.

Variations:

This type of scenario, where learners try to find the solution to a problem relevant to their everyday life has the power to engage them in a completely different way.

Other Stakeholders and their possible interests:

As Veikko tells in the evening what he has done at school his sister also would like to have some flashing LED lights installed on her bag. Veikko realizes that the lights might need improvement in terms of design if used by smaller kids so that all the components are hold within one case. By creating this, the Arduino construction would be more stable than his initial installation and design. Thus, he designs a case in the 3D printing programme TinkerCAD. His teacher allows Veikko to use the 3D printer at school to improve his project. During the creation of the case, there are a lot of errors to resolve at the beginning of the process to get the 3D model to print correctly. However, once in a while, the printing process fails, and Veikko has to discard the spoiled material and start the sequence again. Finally, Veikko managed to have the case printed and installs the Arduino in the case.

Age and Level:

Veikko is a 12 years old student in Helsinki. He goes twice a week to swimming training, likes techno music but he is also fond of online games and computers. With the age of 10 he got for Christmas a Lego robot and with the help of his father – an engineer – he managed to get the robot going.

Primary Actor and main goal:

At school he acquired some basic programming skills already. Veikko also has a younger sister that just started school. Since they live a bit outside of Helsinki, both have to leave early in the morning to go to school. Especially in winter it is still dark when they leave home.

Topic and Content:

Veikko has an innovative teacher who launches different projects. This month the teacher got some Arduino boards to launch different projects. He understood that with Arduino you can programme many different things and combined with sensors he can create many things with different functions.

Preparatory work:

The teacher asked them to prepare a sort of 'concept' that outlines the idea behind, the usage, the materials and skills as well as knowledge they will need a.s.o. Thus, Veikko and Pekka start to investigate which components they would need and establish the list materials, the sensors, the LEDs they would need, a.s.o. The boys also consider the different circumstances for the design (i.e. snow and rain on the sensors and the Arduino board, ...). They hand over their written plan to the teacher and discuss with him the outline.

Description of Activity:

Four days later, the teacher has ordered the needed Arduinos and each of the students have brought additional materials with them. Veikko has brought his old school bag for testing since he is not sure how to attach the LED lights, if he would need to make some holes in the bag, a.s.o.

The teacher helps him plan how to mount the LED lamps on the bag, and also reminds the students they need to insulate the component legs to avoid a short circuit. Before they start building, the teacher helps the students to test the photo sensor with one LED, as a 'proof of concept'. They search online for how to connect the components on the breadboard, and use an Arduino example sketch that reads analog values and maps them into the range suitable for LEDs. They learn about statements, and how to set a threshold for the lights to turn on. After the core concept has been prototyped, the teacher asks the woodwork teacher to help the students solder the parts together. The teacher has helped them draw a circuit on paper to aid them as they solder everything together.

Once everything is connected, it won't light up. The students are very disappointed, and are not sure what to do next. The teacher tries to cheer them up, and shows them a systematic approach to troubleshoot the error. They use the serial monitor to make sure they are getting values from the sensor, and that the threshold is properly set. After that, they upload a code to light up the LEDs only. They don't light up, and one of the students suddenly finds it's because they have not properly insulated the LED legs. Once the whole circuit has been properly insulated, all the technology is working as planned.
4.3. **GREENHOUSE**

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/contributors</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 September 17</td>
<td>Ehrndal, M.</td>
<td>Initial draft of Scenario</td>
</tr>
<tr>
<td>24 September</td>
<td>Hofer, M.</td>
<td>additions</td>
</tr>
<tr>
<td>27 September</td>
<td>Hofer, M.</td>
<td>Final version</td>
</tr>
</tbody>
</table>
Age and Level:

Jenna is a 13-year-old student in Helsinki. She cares deeply about the environment, and loves to take care of plants and animals. Her favourite school subjects are all related to natural sciences, and she is an independent learner who reads a lot about things she finds interesting in her spare time.

Primary Actor and main goal:

At school she has been introduced to programming and basic electronics, but since she didn't understand it instantly it affected her self-confidence. Jenna, having a perception of herself as a fast learner, is starting to think this is not her subject. She has also noticed that some commonly low performing students in her class seems to excel at these subjects. She wants to prove herself, but at the same time relate it to her interests to make it more motivating and meaningful for her.

Description of environment and possible pre-conditions:

The students are asked to work in pairs to realize their projects. Jenna wants to work with her best friend, Aina. They share similar interests, and as they have been introduced to Arduino and programming, they have also asked their parents to buy electronics to that they can learn at their own pace at home. Soon, Jenna and Aina agree that they want to build an automated greenhouse.

Preparatory work:

The teachers are not sure how to help them, they have only bought some kits with components and are not sure their idea can be realized. Most students have much simpler ideas, that the teachers can help to realize. Aina's father, who works in IT, knows about Arduino and Raspberry Pi, so he decides to help the girls order the material needed. He is later contacted by the teachers, so that he can share his knowledge with the others.

Description of Activity:

Once the material has arrived, Jenna and Aina have a systematic approach towards testing them and putting everything together. As per Aina's father's advice, they split their problem into small parts, and test the solutions separately. Since they are both independent learners, they can find most information needed to build and code the core parts of their project by themselves. They test the light sensor first, to learn what values they receive in different light conditions. They then try the temperature sensor, and explore different ways to build a humidity sensor. Aina's father helps them to filter the captured data to make the values more stable.

Other Stakeholders and their possible Interests:

After spending some time realizing their spare time project, they decide to bring it to school to show it to their teachers. The teachers are impressed, and have Aina and Jenna present their project to the class. They also try to understand what resources and knowledge will be needed for themselves to support similar student projects to be created in school.

Success and condition:

The teachers learn that Aina and Jenna were able to build a more complex project not only because they had Aina's father as a support, but because they came into the project with no idea of how feasible it was. They were also able to realize the project independently as they did it at their own pace, driven by their own motivation and interest in the final result, and since they were both independent learners. In the end, Jenna and Aina had as much electronics knowledge and skills as the high performing students in the same subject.

Failure and conditions:

Without Aina's father helping out, the girls would not have had the support needed to finalize their project. The challenge for the school would be to make this visible, and provide the appropriate support. Jenna and Aina would perhaps not have had the opportunity to understand that they were as able as their other classmates in regards to hands-on technology. The eCraft2Learn systems ability to put the learners in direct contact with experts would make this scenario possible for more students.
4.4. PRANK MACHINE

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/contributors</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 September 17</td>
<td>Ehrndal, M.</td>
<td>Initial draft of Scenario</td>
</tr>
<tr>
<td>24 September</td>
<td>Hofer, M.</td>
<td>additions</td>
</tr>
<tr>
<td>3 October</td>
<td>Hofer, M.</td>
<td>Final version</td>
</tr>
</tbody>
</table>

© 2017 eCraft2Learn | Horizon 2020 | 731345
Description of environment and possible pre-conditions:

The teacher plans it so that her students can come up with concepts 6 months before the deadline in December. Although she does have a small lab with basic electronics components that she started to build up two years ago, she knows final projects often meant materials had to be ordered. Since some components had to be ordered from China, sometimes with weeks of shipping time, she made sure to collect material lists as early as possible. This year, as she had started to collaborate with the woodwork teacher, she had a bigger budget for materials, and planned on buying some soldering irons, wire strippers, as well as a laser cutter. After some lessons learned from the previous year, they had decided to collaborate later in the project, to make sure everything got finished in time for Christmas.

Preparatory work:

The teacher asks the students to prepare a sort of ‘concept’ that outlines the idea behind, the usage, the materials and skills as well as knowledge they will need. As Elias is planned to help out with a range of his classmates projects, he also agrees to simplify his own idea.

While other classmates are planning to create functional projects, Elias wants to create something fun. His teacher had something different in mind, but decides to avoid discouraging Elias, now that he is finally enthusiastic about a school topic. Elias wants to create a prank machine, so that he can film his prank victims for his Youtube channel.

His teacher helps him discard offensive pranks as well as pranks that are too technically complex for the time at hand. In the end, the idea is to create a machine that senses when someone comes close to the school Christmas tree, and that triggers the song ‘Last Christmas’ at the same time as the Christmas lights start to animate in disco-like patterns.

Preparatory work:

As Elias’s teacher had the students create their own technology projects, she noticed Elias’s ideas were standing out, but seemed very complex to carry out. Since he learned so fast, she made him and another one of his classmates, mentors for the other students.

Elias who has stopped attending her Physics class, is excelling at Arduino and electronics. Although he is dyslexic, he seems to have little trouble programming in the Arduino IDE.

Primary Actor and main goal:

His technology teacher has started to introduce the class to Arduino. To her surprise, Elias who has stopped attending her Physics class, is excelling at Arduino and electronics. Although he is dyslexic, he seems to have little trouble programming in the Arduino IDE.

Topic and Content:

As Elias’s teacher had the students create their own technology projects, she noticed Elias’s ideas were standing out, but seemed very complex to carry out. Since he learned so fast, she made him and another one of his classmates, mentors for the other students.

Elias’ ideas were standing out, but seemed very complex to carry out. Since he learned so fast, she made him and another one of his classmates, mentors for the other students.

Describing his technology teacher has started to introduce the class to Arduino. To her surprise, Elias who has stopped attending her Physics class, is excelling at Arduino and electronics. Although he is dyslexic, he seems to have little trouble programming in the Arduino IDE.

Description of Activity:

As students are doing research on components needed, some have to change their concepts based on technical limitations and material cost. One project planning to use five servo motors and three ultrasonic sensors is completely discarded. Although it is expensive, Elias wants to order an mp3 shield for his project. His teacher knows that the best way to easily control several LED lamps is through using an addressable LED strip, so she helps him order addressable LED Christmas lights.

As the ordered materials arrive, the students prototype and test them to learn more about the components they are planning to use. Elias is quite disappointed as he notices the mp3 shield uses so many pins on his Arduino board that he can’t fit the other components and functions he wants in his project. He decides to use two Arduino boards, and brings the one he has personally brought to school.

Starting out, he tries out the mp3 shield with a special code library he has found online. Once he gets it working, since he found there to be few pins and power left for the sensor he had planned, he decides he will craft his own push button to trigger the song. The teacher helps him find tutorials online, and makes sure the textile teacher can allocate some time to help out ordering materials and sewing the button. Elias then finds resources online for how to connect and control the addressable LEDs he has ordered. He uses a PIR sensor to trigger a light animation when someone was close to the Christmas tree. The e-textile push button is made to be a carpet in front of the christmas tree.

Other Stakeholders and their possible Interests:

As Christmas break is approaching, Elias has his Christmas prank installed in the school’s main hall. One day he decides to film the reactions, and edits a compilation of the best reactions. With the consent of the ones depicted, Elias then shares the compilation on his Youtube channel. It is spread locally in the school, giving him more followers, and it is suddenly shared on a famous blog authored by a “Maker”.

Success and condition:

After some time, Elias starts to explore a new identity as a Maker. He contacts the blogger, and continues to expand his network as well as work on more advanced projects.

Failure and conditions:

It is being challenging for the teacher to evaluate the student projects according to the learning goals. Since the student projects are not framed by neither theme/topical nor technical solution, the variation of outcomes might make them challenging to realize and evaluate.

Variations:

The brief given was kept open, but could have been tied to specific technical solutions or related to certain theoretical topics.

Age and Level:

Elias is a 14-year-old student in Helsinki. He has a hard time concentrating in the classroom, and has started to skip some classes to hang out with friends around town. His main hobby is playing online video games with his friends. Since he has a lot of experience that he is also good at sharing, he is the leader of two MMORPG guilds. He has his own game oriented YouTube channel, and has gained around 200 followers since he started a year ago.

Primary Actor and main goal:

His technology teacher has started to introduce the class to Arduino. To her surprise, Elias who has stopped attending her Physics class, is excelling at Arduino and electronics. Although he is dyslexic, he seems to have little trouble programming in the Arduino IDE.

Description of Activity:

As students are doing research on components needed, some have to change their concepts based on technical limitations and material cost. One project planning to use five servo motors and three ultrasonic sensors is completely discarded. Although it is expensive, Elias wants to order an mp3 shield for his project. His teacher knows that the best way to easily control several LED lamps is through using an addressable LED strip, so she helps him order addressable LED Christmas lights.

As the ordered materials arrive, the students prototype and test them to learn more about the components they are planning to use. Elias is quite disappointed as he notices the mp3 shield uses so many pins on his Arduino board that he can’t fit the other components and functions he wants in his project. He decides to use two Arduino boards, and brings the one he has personally brought to school.
4.5. **Air Pollution Box**

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/contributors</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 July 17</td>
<td>Hofer, M.</td>
<td>Initial draft of Scenario</td>
</tr>
<tr>
<td>23 July 17</td>
<td>Hofer, M.</td>
<td>revision</td>
</tr>
<tr>
<td>24 July 17</td>
<td>Fischbacher, A.</td>
<td>Discussion, second revision</td>
</tr>
<tr>
<td>25 September 17</td>
<td>Ehrndal, M.</td>
<td>Revision of content</td>
</tr>
<tr>
<td>3 October 17</td>
<td>Hofer, M.</td>
<td>Final version integrated</td>
</tr>
</tbody>
</table>
thus she is aware that she would need very clear and detailed instructions to get

handled different programmes. Some of them did amazing crafting the year before. As

From previous projects she knows that most of her 14-year-old students only have

awareness of the invisible concept of air pollution.

need to incorporate some specific technical components, and that they need to bring

the students to be freer to come up with their own ideas. She decides that all projects

Last year she had everyone collaborate on the same project, but this year she wants

mountains, she plans to raise the awareness of her students towards air pollution.

Primary Actor and main goal:

Anna, 39 years old, is a second-grade student teacher for Biology, Maths and Physics

in Austria. The new system of ‘Neue Mittelschule’ is meeting very much her personal

wishes for teaching. A personal attitude of her being as teacher is to enable and empower

students and connecting theoretical knowledge with practice. Thus, she is balancing

her teaching a lot with different teaching methods and pedagogical approaches. She

also tries to foster team work amongst the students since she is convinced that this is

a core skill for the next generation. She tries hard to integrate the obligatory curricu-

lum plan with the student projects, and is getting better at this every year.

Preparatory work:

Two weeks later Anna starts with the educational content preparations. She decides to

give some first initial input before starting the project in order to allow the students to

gain a broad context of pollution, talking about atmospheric ozone, carbon dioxide

emission, methane gas, and other substances that affects air quality.

Starting out, she wants all students to follow instructions to connect an Oxygen(O2) gas

sensor, to read the values with an Arduino. This ensures individual assessment. For

the project, she and Mike then give them the exercise to use incoming sensor values, from

a gas sensor of their choice, to control an LED, a motor, a Piezo, or any other compo-

nent. This, along with an explanation of what their code did, was the minimum technical

solution and deliverable they needed to implement in order to pass Mike’s IT class

learning goals.

Description of environment and possible pre-conditions:

Anna and Mike start by looking through the electronics and tools inventory from last year,

to sort out all broken components. This takes longer than expected, and Anna decides that

next year she will do this as soon as the term has ended.

After they have spent some time researching what materials and tools to purchase for

the pollution theme, Anna calculates the related costs for materials needed. After making

sure the cost falls within the yearly budget, Anna pays a visit to the local electronics store

in the outskirts of the town. She spends the following days sorting components into

compartments boxes, and makes sure to label all components and resistor values. She

learned this from last year, as all components and resistors quickly became a mess.

Mike makes sure to update the computer programs software with the latest version of

the Arduino IDE. He also makes sure all students have access to the eCraft2Learn platform

that has been installed in the classroom.

Description of Activity:

Anna gives her students the task to learn about air pollution. She splits her

students into eight small groups, and ask them students to list causes, solutions,

and to locate what gases are polluting the environment, and how. The students

are told to work in groups to visualize the findings in one poster, and are then

paired with another group to present their findings. The paired groups are then

instructed that they now work together, and that they are supposed to create an

interactive system that can detect one or more types of air pollution, and then

carry out one or more actions(outputs). The teams brainstorm, present their

ideas, and are given feedback on them based on relevance, usability, and feasibil-

ity. The concepts students have created are:

• A sensor box that opens a window when CO2 levels are too high
• A fart (methane gas) sensor that makes a Piezo beep as a threshold is reached
• An Ozone map (built to represent ozone levels in different areas around the
school)
• “Bach’s air” – a portable instrument made out of sensors. The different inputs

are transformed into tones for different instruments or music loops.

Anna and Mike meet the teams one by one, to help them iterate their ideas, and

understand what tools and materials they will need to complete the projects.

After a few days, the 4 teams meet in the drafting room. Anna and Mike have

brought the materials each group needs, meaning the practical part of the

project has begun. Students take on different roles in the teams, and to ensure

everyone are actively involved, they meet with the teams and have them describe

their work every week. The teams are encouraged to solve the problems they

stumble upon on their own, and during the weekly support meetings they mainly

get hints and links to relevant resources. They can also book Mike for an hour to

help out with the soldering of the circuits.

Most groups have similar problem, such as dealing with gas sensor warm-up
time, and setting appropriate threshold values. Some groups want to build their

electronics into boxes, and get help from the wood crafting teacher. The teams

find this type of activity tracking is partially integrated into the

eCraft2Learn system.

After five weeks it is time for final presentations. The students are asked to give a

background description based on their initial research, demonstrate their

prototype, and to talk about what they’ve learned throughout the process.

One group of students are not finished, and their prototype is only half done.

Anna, on the other hand, was more interested in the biological pollution aspect,

as well as the introduction of mathematical concepts such as < (smaller than),

and ->(bigger than) being used in the conditional statements. Other than that,

she is also interested in how well they are able to collaborate and execute a

project in groups, and plans to have the students keep a log of what they are

doing. She later finds this type of activity tracking is partially integrated into the

eCraft2Learn system.
They are asked to present their project later, and are told they cannot get the top grade for their project.

Other Stakeholders and their possible Interests:

As the woodcraft teacher is contacted by the students to help them build cases for their electronics, she starts to imagine ways to incorporate these types of projects in her curricular activities. She starts to think about complex mechanical structures, as well as product design angles.

After discussing her thoughts with Mike and Anna, she decides that a laser cutter and an Ultimaker 3D printer should be purchased for next year. They also agree to collaborate more the following year, and have at least three cross curricular student projects that can be executed in a similar way.

To ensure their hours can be scheduled in sync to make this happen, they talk to the school principal. The principal is positive to this development, and encourages the teachers to present this at the next teacher meetup so that it can inspire other subject teachers to do the same.

Success and condition:

One week after the project is over, the last student group is able to demonstrate their prototype and get their grade. They are asked to write a post mortem to reflect on what they could have done different to deliver on time. In the end, all four teams were able to conduct research, create concepts, realize their ideas, and present their project and share what they learned to the class.

Failure and conditions:

Anna and Mike learned that their schedules needed to be more in sync, that they lacked the time, knowledge, materials and tools to build the electronics into physical objects. It was hard to keep track of the students’ individual contributions to the teams, and this was something they wanted to improve for the following year.

Extensions:

Some students started tinkering after school, and would create interesting devices at home.

Variations:

The brief given to the students could be made more defined or open depending on the topic. The themes and topics could be varied as well.
5 CONCLUSION AND OUTLOOK

The present document has been further elaborated on different use cases and presented also some first personas. The grounding information to enable this elaboration was based on different sources like interviews (performed in WP2) and the feedback of teachers, two data sets of questionnaires as well as experiences made during workshops.

In the weeks and months following the submission of this deliverable, the user cases will be further developed. However, it is expected that also additional use cases will follow, depending on the concrete ideas that will be assessed by i.e the teacher training workshops, the technological development in the eCraft2Learn environment and the different discussions on pedagogical, technical and practical level. Further, additional personas will be elaborated in the last and final set of Deliverable 3.2. They will allow increased insights into concrete needs of users and consequently influence also the advancement and adaptation of the eCraft2Learn environment.
6 REFERENCES

ANNEX 1: INTERVIEW GUIDELINE SEMI – STRUCTURED

eCraft2Learn
WP 3 - semi structured Interview guideline for facilitators
to be used for creating
a. Personas and
b. Use cases (II)

considering also:
• Needs of WP2
• Needs of WP 4 - technical requirements
• Information needed for dissemination purpose - WP 6

Inform interviewee about purpose of the interview and the right to ask for anonymization and also the usage for dissemination purpose.

Questions for the eCraft2Learn Joensuu Workshop (SciFest) facilitators:

1. Tell us about yourself! What is your background and what experience do you have in which area(s)?

2. The workshop you did in Joensuu
 a. Can you describe a bit about the planning of the workshop, the preparations, and what has happened there?
 b. What was your specific role there?
 c. What was the learning goal?

3. How did you set up the learning activities?
 a. Was it easy for you (asking for environment incl. barriers, conditions, ...), or rather difficult?

4. Can you tell us a bit about your learners/participants?
 a. How well did they handle the technology and programming?
 b. Did they have many questions?
 c. Any specifics you observed like special interests, knowledge, abilities, ...

5. What technologies did you use with your learners and why exactly those?

6. Where there other people, supporting or other stakeholders? For this informal setting how many ‘advisors’ would be ideal?

7. Did you have the impression that the workshop was a success or a failure? If so, why?
8. What are the most important things to consider when planning a learning activity/project?

9. Would you do something differently? If so, what exactly?

10. What items should the eCraft2Learn platform/system contain?

11. Anything else you observed or that you would like to add?