

Footer – Please leave the footer blank

Interpolating (and extrapolating) 3D turtle
programs in Beetle Blocks

Ken Kahn, toontalk@gmail.com
Department of Education, University of Oxford, 15 Norham Gardens, Oxford, OX2 6PY

Abstract (Demonstration)

Turtle programs can be treated as objects to manipulate. In this demo a program takes two turtle
programs as input and creates a new program that is the interpolation between the input programs.
An input of .25, for example, will behave like one-fourth of the first program and three-fourths of
the second. An input greater than 1 will extrapolate beyond the second program in the direction
from the first program. This idea was explored in (Kahn 2007) for two-dimensional turtle programs.
Here we generalise it for Beetle Blocks (Romagosa et al 2016), a 3D version of Snap! (Harvey &
Mönig 2010).

Keywords

Program interpolation; Snap!; Turtle programming; 3D Turtles; Beetle Blocks; Codification;

Interpolating and extrapolating between circles, stars, and pentagons

Header – Please leave the header blank

Footer – Please leave the footer blank

Interpolating 2D Logo turtle programs

(Kahn 2007) describes a program interpolator that can create a new program from two Logo
programs that are defined using FORWARD, RIGHT, REPEAT, SETPENCOLOR, PENUP, and
PENDOWN. As the simplest example consider two programs that draw different length lines:

to short

forward 40

end

to long

forward 100

end

The interpolated program is:

to short_to_long :x

forward interpolate :x 40 100

end

to interpolate :x :a :b

output :a + :x * (:b - :a)

end

SHORT_TO_LONG 0 behaves just as SHORT, SHORT_TO_LONG 1 behaves as LONG,
SHORT_TO_LONG .5 averages them, and SHORT_TO_LONG 2 extrapolates beyond LONG
starting from SHORT.

The difficult step is canonicalising input programs that repeat a sequence of turtle commands a
different number of times. (Kahn 2007) explains this in detail.

Moving to 3D

Beetle Blocks (Romagosa et al 2016) is a well-designed 3D version of Snap! (Harvey & Mönig
2010). Before one can begin to create interpolations of Snap! or Beetle Blocks programs we need
a way to treat a block program as a data structure that can be manipulated programmatically.
Fortunately, Snap! has a “codification” feature (Ball et all 2015; Harvey & Mönig 2018). Codification
has been used to define how Snap! blocks can be translated to Python, C, Smalltalk, JavaScript,
or other languages. We used this feature to translate Snap! blocks into JSON strings that are then
converted into Snap! lists.

The problem of programming a Snap! program that constructs another program (the interpolation
program) was resolved by defining the constructed program as a list of closures that can be run
to execute a sequence of commands. The values or expressions in corresponding commands in
the two input programs are handled as variables closed over by functions.

FORWARD (or MOVE as it is called in Beetle Blocks) is treated in a similar manner to how the 2D
turtle interpolator worked. RIGHT (or ROTATE as it is called in Beetle Blocks) has an additional
argument that specifies whether the rotation is around the x, y, or z axes. As long as both programs
rotate in the same dimension in the corresponding program locations it is straight-forward to
generalise to 3D. To make a more generic interpolator other Beetle Block commands are also
supported including “go to x: y: z:” and a list of “set” commands that change coordinates, hue,
saturation, lightness, and opacity. Beetle Block command for extruding curves and lines are also
handled. Furthermore, arithmetic expressions involving addition, subtraction, multiplication, and
division are supported. Support for user reporters can be easily added.

Constructionism2018 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

Figure 1 - A simple example of interpolating a yellow triangle to green hexagon

Figure 2 - A program to run the triangle to hexagon interpolation program with 21 values from 0 to 1

Figure 3 - the result of running 21 interpolations between the triangle and hexagon

Header – Please leave the header blank

Footer – Please leave the footer blank

Figure 4 - Interpolating and extrapolating between circles, stars, and pentagons

A very nice feature of Beetle Blocks is that the output of 3D turtle programs can be created on 3D
printers. Figure 4, for example, is an attempt to make a vase. This program (and the interpolation
program generator) can be found at https://tinyurl.com/circle-star-pentagon.

Conclusion

A turtle program is more than a shape. A circle, for example, can be drawn clockwise, counter-
clockwise, or multiple times. The consequences of how a shape is drawn can result in dramatically
different interpolations and extrapolations. Students tinkering with program interpolation and
extrapolation are entering a mathematically and computationally rich area. And the creative and
aesthetic possibilities of interpolating and extrapolating between turtle programs are many.

References

Ball, M., Mock, L., McKinsey, J. Machardy, Z., Garcia, D., Titterton, N., Harvey, B. (2015) Oh,
Snap! Enabling and Encouraging Success in CS1. In: SIGCSE '15 Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. pp 691-691.

Harvey, B., Mönig, J., (2010) Bringing “No Ceiling” to Scratch: Can One Language Serve Kids and
Computer Scientists? In Proceedings: Constructionism, Paris, France.

Harvey, B., Mönig, J., (2018) Snap! 4.1. Reference Manual.
https://snap.berkeley.edu/SnapManual.pdf.

Kahn, K (2007) A Program to Interpolate (And Extrapolate) Between Turtle Programs.
International Journal of Computers for Mathematical Learning. December. Volume 12. Issue 3. pp
255–262.

Romagosa, B., Rosenbaum, E., Koschitz , D. (2016) From the Turtle to the Beetle - The Beetle
Blocks programming environment. http://hdl.handle.net/10609/52807. Universitat Oberta de
Catalunya.

http://hdl.handle.net/10609/52807

